Role of divalent cation (Ba) substitution in Li$^+$ ion conductor LiTi$_2$(PO$_4$)$_3$: Molecular dynamics study

Kartik Saua, Tamio Ikeshojia, and Supriya Royb

aMathematics for Advanced Materials - Open Innovation Laboratory (MathAM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), c/o Advanced Institute of Material Research (AIMR), Tohoku University, Sendai 980-8577, Japan
Email: kartik.sau@gmail.com
bInstitute of Physics, Academia Sinica, Taiwan

Fig. S1 Mean Square Displacement of Li$^+$ ion for x, y, z component and total for $x = 0.67$ (left) and $x = 0.83$ (right) composition.

Fig. S2 Polyhedral model of LiTi$_2$(PO$_4$)$_3$ for super-cell consists of $4 \times 4 \times 1$-unit cells. The TiO$_6$ octahedra is represented by cyan and PO$_4$ tetrahedra is represented by blue. The Li1-site is indicated by green ball. The purple box indicates the plane where Ba$^{2+}$ is located for ordered cases in Li1-sites. The purple box will be filled one by one from top to bottom (indicated by red arrow) depending on the compositions. This order arrangement is different than Fig. 1 in term of Ba$^{2+}$ filling order.