Supplementary Information

Elucidation of the Role of Guanidinium Incorporation in Single-Crystalline MAPbI₃ Perovskite on Ion Migration and Activation Energy

Apurba Mahapatra,^a Rashmi Runjhun,^b Jan Nawrocki,^b Janusz Lewiński,^{b,c} Abul Kalam,^d Pawan Kumar,^a Suverna Trivedi,^e Mohammad Mahdi Tavakoli,^f Daniel Prochowicz^{b,*} and Pankaj Yadav ^{g,*}

^a Department of Physics & Astronomy, National Institute of Technology, Rourkela, 769008, India

^b Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

^c Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

^d Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia.

^e Department of chemical Engineering, National Institute of Technology, Rourkela, 769008, India

^f Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^g Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382 007, Gujarat, India.

E-mail: Pankajphd11@gmail.com; dprochowicz@ichf.edu.pl

Fig. S1 ¹H NMR spectra of MAPbI₃ and GUA_{0.015}MA_{0.985}PbI₃ single crystals. The GUA/MA ratio was calculated using the integrated values for the resonances belonging to amine group of GUA (6.91 ppm) and MA (7.50 ppm). The peaks marked as * correspond to DMSO-d₆ and water.

The GUA/MA ratio was calculated using the integrated values for NH_3^+ and $(NH_2)_3^+$ of the resonances belonging to MA and GUA, respectively:

 $x = [(NH_2^+)_{GUA}/6] = 0.03/6 = 0.005$

$$y = [(NH_3^+)_{MA}/3] = 1/3 = 0.333$$

%GUA = $\frac{x}{x+y}$ * 100% = $\frac{0.005}{0.005+0.333} \cong 1.5\%$

%MA = $\frac{y}{x+y}$ * 100% = $\frac{0.333}{0.005+0.333} \cong 98.5\%$

Fig. S2 pXRD patterns of MAPbI₃ and GUA_{0.015}MA_{0.985}PbI₃ single crystals ground to powder in the range of (a) 10-40 2θ and (b) 12-30 2θ , indicating a small shift of the peaks to lower angles upon introduction of GUA cations.

Fig. S3 Image of GUA_{0.015}MA_{0.985}PbI₃ single crystal.

Fig. S4 Nyquist plots of the (a-b) MAPbI₃ and (c-d) $GUA_{0.015}MA_{0.985}PbI_3$ single crystals at 0 V DC bias in the frequencies ranged from 1 MHz to 1 Hz as a function of temperature (313-363 K).

Fig. S5. The real part of Nyquist spectra of the (a-b) MAPbI₃ and (c-d) $GUA_{0.015}MA_{0.985}PbI_3$ single crystals as a function of temperature (313-363 K).

Fig. S6 The complex impedance part of (a-b) MAPbI₃ and (c-d) GUA_{0.015}MA_{0.985}PbI₃ single crystals as a function of frequency and temperature during increasing and decreasing temperature cycles.

Fig. S7 The temperature-dependent conductivity of (a) MAPbI₃ and (b) GUA_{0.015}MA_{0.985}PbI₃ single crystals.

Fig. S8 Dark I-V curves of (a) MAPbI₃ and (b) $GUA_{0.015}MA_{0.985}PbI_3$ single crystals measured under forward and reverse biases as a function of scan rate.