Electronic Supplementary Information

Understanding ionic mesophase stabilization by hydration: A solid-state NMR study

Debashis Majhi, Jing Dai, Andrei V. Komolkin, and Sergey V. Dvinskikh*

Table of Contents

S1. Materials and Methods
S2. 13C-1H PDLF experiment in static sample
S3. 13C-1H APM-CP experiment in spinning sample
S4. 13C-13C dipolar CP-INADEQUATE experiment at natural isotopic abundance
S5. 13C-15N dipolar spectroscopy at natural isotopic abundance
S6. Natural abundance deuterium (NAD) NMR
S7. Bond order parameters S_{CH} in the imidazolium ring of the C$_{12}$mim cation with different anions
S8. 1H isotropic chemical shifts
S9. Water translational diffusion in C$_{12}$mimBr-H$_2$O
S1. Materials and Methods

Ionic mesogenic materials C_{12}mimCl and C_{12}mimBr (1-dodecyl-3-methylimidazolium chloride and bromide, respectively) were purchased from ABCR GmbH, Karlsruhe. Monohydrated samples were prepared by equilibrating for about 12 h in a desiccator with RH≈85%, stabilized by a saturated KCl solution. Representative NMR spectra of samples in mesophase are shown in Fig. S1a,b.

Table S1. Water contents and phase transition temperatures

<table>
<thead>
<tr>
<th>Ionic liquid</th>
<th>H$_2$O mole fraction a)</th>
<th>$T_{Cr\rightarrow Sm}$, °C</th>
<th>$T_{Iso\rightarrow Sm}$, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{12}mimCl</td>
<td>0.004</td>
<td>36</td>
<td>118</td>
</tr>
<tr>
<td>C_{12}mimCl·H$_2$O</td>
<td>0.48</td>
<td>30</td>
<td>154</td>
</tr>
<tr>
<td>C_{12}mimBr</td>
<td>0.025</td>
<td>40</td>
<td>102</td>
</tr>
<tr>
<td>C_{12}mimBr·H$_2$O</td>
<td>0.50</td>
<td>36</td>
<td>129</td>
</tr>
</tbody>
</table>

a) Water content was estimated from 1H NMR spectra in isotropic phase

Figure S1a. Proton NMR spectra in smectic A phase of anhydrous (top, 95°C) and monohydrated (bottom, 120°C) C_{12}mimCl salt.
Figure S1b. Carbon-13 cross-polarization (CP) proton-decoupled NMR spectra in the smectic A phase of anhydrous (top, 95°C) and monohydrated (bottom, 120°C) C_{12}mimCl salt.
In uniaxial mesophases, the rigid-lattice CSA tensor is averaged into an axially symmetric tensor with principal components δ_{\parallel} and δ_{\perp}, corresponding to LC domains with the director oriented parallel and perpendicular to the magnetic field, respectively, and with isotropic chemical shift $\delta^{\text{iso}} = (\delta_{\parallel}^{LC} + 2\delta_{\perp}^{LC})/3$. In our samples, which exhibit a negative anisotropy of the diamagnetic susceptibility, the director aligns in the plane perpendicular to the magnetic field of the spectrometer. Hence, the observed chemical shifts are determined by the δ_{\perp}^{LC} values.1
S2. 13C-1H PDLF experiment in static sample

Figure S2a. PDLF pulse sequence to record dipolar 13C-1H spectra in static samples. In the indirect time period t_1 of the PDLF experiment, 2 proton (1H) magnetization evolves in the presence of the local dipolar fields of rare 13C spins. Application of the proton homonuclear decoupling sequence BLEW-48 scales the heteronuclear couplings d_{CH} with a factor of $k=0.42$. A pair of 180° pulses is applied at $t_1/2$ to refocus 1H chemical shifts while retaining the 1H-13C couplings. The proton magnetization is transferred to 13C spins via CP and the carbon signal is detected under TPPM 1H heteronuclear decoupling.

Figure S2b. Cross-sections along dipolar dimension from 2D PDLF spectrum in C_{12}mimBr-H$_2$O smectic A phase at 107 °C are shown for the alkyl chain carbons.
**S3. **13C-1H APM-CP experiment in spinning sample

![Diagram of APM-CP pulse sequence]

Figure S3a. APM-CP pulse sequence to record dipolar 13C-1H spectra in spinning samples.5,6 After the CP signal enhancement, the dipolar evolution period is initiated by inverting the phase of the 1H spin-lock field. The rf fields during t_1 period are phase- and amplitude-modulated to achieve the 1H-13C heteronuclear dipolar recoupling. Finally, the 13C signal is detected in the presence of the heteronuclear 1H decoupling.

![Cross-sections along dipolar dimension from 2D APM-CP spectrum]

Figure S3b. Cross-sections along dipolar dimension from 2D APM-CP spectrum in C$_{12}$mimCl smectic A phase at 73 °C are shown for the imidazolium carbons. Spectra were measured at 5 kHz sample spinning speed and with average recoupling radio-frequency field of $\gamma B_1/2\pi = 28$ kHz.

![Comparison of C-H bond order parameters S_{CH}]

Figure S3c. Comparison of the C-H bond order parameters S_{CH} obtained from PDLF and APM-CP experiments in C$_{12}$mimCl smectic A phase at 73 °C. Carbon sites 5–7 of the alkyl chain were not resolved in APM-CP spectrum.
S4. 13C-13C dipolar CP-INADEQUATE experiment at natural isotopic abundance.

Figure S4a. INADEQUATE pulse sequence7 was modified by (i) using ADRF CP for 13C signal enhancement8 and (ii) setting the excitation delay τ to generate double quantum (DQ) coherences according to range of dipolar couplings to be measured.9

Figure S4b. 13C-13C INADEQUATE spectra in the smectic A phase of C$_{12}$mimCl at 95 °C. The excitation delay in DQ-filter is set to $\tau = 0.83$ ms. Correlation peaks between chain carbons 1-3, 2-4, and 3-5 separated by two bonds are indicated by dashed lines. The observed splittings $\Delta \nu$, contributed by the C-C dipolar coupling depend on the frequency difference $\Delta \delta$ between involved spins. When $\Delta \delta$ is small compared to the splitting $\Delta \nu$, the dipolar coupling is given by $d_{CC} = \Delta \nu/3$, while for the opposite case $d_{CC} = (\Delta \nu - J)/2$. For intermediate cases, numerical analysis was performed to determine d_{CC}. For carbons separated by two bonds, literature values of the J-coupling are small, within 0-2 Hz range, and were neglected in the analysis.10
S5. 13C-15N dipolar spectroscopy at natural isotopic abundance.

Figure S5a. 13C CP spectra acquired without and with 15N decoupling in alternate scans are subtracted from each other,11,12 In the resulting difference spectrum, the central peak of uncoupled spins is suppressed while the signal of 13C-15N coupled pairs is preserved. A dipolar interaction with abundant 1H spins is removed by proton decoupling applied to both spectra. In the scans acquired without nitrogen decoupling, the 13C–15N coupled pairs lead to dipolar doublets in the 13C spectrum, whereas they contribute to a residual central peak in the scans with 15N decoupling. The difference spectrum thus represents a superposition of the 13C–15N doublet and the central peak of the opposite sign.

Figure S5b. 13C–15N dipolar spectrum acquired by recording 13C difference spectra with nitrogen-15 decoupling in alternating scans. 8k scans were accumulated with a relaxation delay of 4 s (12 h measurement time).

S6. Natural abundance deuterium (NAD) NMR

Figure S6. 2H NMR spectrum of C$_{12}$mimCl in smectic A phase at 110 °C. Spectrum is measured at the natural isotopic abundance of 2H (0.015%) and in the presence of 1H decoupling. 128k scans were accumulated with relaxation delay 0.5s (18 h experimental time).
S7. Bond order parameters S_{CH} in the imidazolium ring of the C$_{12}$mim cation with different anions.

![Graph showing bond order parameters S_{CH} for different anions]

Figure S7. Bond order parameters S_{CH} in the imidazolium ring for the anhydrous C$_{12}$mimX salts with different anions $X = \text{BF}_4, \text{I}, \text{Cl}, \text{and Br}$. Data are compared at approximately the same difference temperature ΔT with respect to clearing temperature $\Delta T=T-T_C \approx 20^\circ\text{C}$.

S8. 1H isotropic chemical shifts

![NMR spectrum showing 1H chemical shifts]

Figure S8. 1H chemical shift spectra of anhydrous (top) and monohydrated C$_{12}$mimBr (bottom) samples in the isotropic phase.
S9. Water translational diffusion in C$_{12}$mimBr\cdotH$_2$O

Figure S9. Water diffusion coefficients, D_{iso} (○), D_{\parallel} (■), and D_{\perp} (●) in the isotropic and smectic A phases of C$_{12}$mimBr\cdotH$_2$O ionic liquid. Lines are guides for the eye.

References