Supporting information

Probing NaCl hydrate formation from aqueous solutions
by Terahertz Time-Domain Spectroscopy

Ligang Chen,†a,b Guanhua Ren,†a,b Liyuan Liu,*,a Pan Guo, b Endong Wang, b Zhongjie Zhu, b Jinrong Yang, b Jianxiong Shen, c Zongchang Zhang, c Lu Zhou, a Jianbing Zhang, bc Bin Yang, d Weili Zhang, ae Yi Gao, bc Hongwei Zhao, b,c,* and Jiaguang Han**

a Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
b Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
c Shanghai Advanced Research Institute Zhangjiang Lab, Chinese Academy of Sciences, Shanghai 201210, China
d Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester, UK, CH2 4NU
e School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Fig. S1 THz spectra of 1 M KCl solution: (A) the absorbance of cooling and (B) the temperature dependent hysteresis curves of absorbance at 2.0 THz of the heating-cooling cycle.

Fig. S2 THz absorbance spectra of NaCl aqueous at different concentrations of (A) 0.1, (B) 0.2, and (C) 4 M obtained during cooling.

Fig. S3 The absorbance-temperature hysteresis curves derived from the absorbance amplitude at 2 THz for (A) 0.1, (B) 0.2 and (C) 4 M.