Supporting Information: The Missing NH Stretch Fundamental in S₁ Methyl Anthranilate: IR-UV Double Resonance Experiments and Local Mode Theory

Karl N. Blodgett^a, Joshua L. Fischer^a, Timothy S. Zwier^{a,c,*}, and Edwin L. Sibert, III^{b,*}

^aDepartment of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, U.S.A. ^bDepartment of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. ^cCurrent address: Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 U.S.A.

Table of Contents

- 1. Calculated Electronic States in MA and MA-H₂O p. 2
- 2. Change in Electrostatic Potential Mapped onto Increasing p. 3 Electron Density Surface in MA-H₂O
- 3. NH and ND Stretch Eigenfunctions and Corresponding p. 4 Potentials in S1

1. Electronic States in MA and MA-H₂O

Methyl Anthranilate			Methyl Anthranilate-H ₂ O		
State	Energy (eV)	f _{0n}	State	Energy (eV)	f_{0n}
³ ππ*	3.03	0.0000	³ ππ*	2.95	0.0000
³ ππ*	3.56	0.0000	³ ππ*	3.50	0.0000
¹ ππ*	3.92	0.1036	¹ ππ*	3.84	0.1077
³ ππ*	4.17	0.0000	³ ππ*	4.12	0.0000
³ nπ*	4.69	0.0000	³ nπ*	4.81	0.0000
¹ nπ*	5.08	0.0002	$^{1}n\pi^{*}/\pi\pi^{*}$	5.15	0.0530
$^{1}\pi\pi^{*}$	5.23	0.0481	$^{1}n\pi^{*}/\pi\pi^{*}$	5.18	0.0117

Table S1: Electronic States in MA and MA-H₂O^a. Adapted from *Phys. Chem. Chem. Phys.*, 2019, 21, 21355 with permission of the PCCP Owner Societies.

^aValues calculated at the DFT B3LYP-D3BJ/def2TZVP level of theory

2. Change in Electrostatic Potential Mapped onto Increasing Electron Density Surface in MA-H₂O

Figure S1: The change in electrostatic potential mapped onto the surface of increasing electron density in going from $S_0 - S_1$ in MA-H₂O. Calculated at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory. The appearance of a covalent bond between the C=O and water OH groups is an artifact of the calculation.

3. NH and ND Stretch Eigenfunctions and Corresponding Potentials in S1

Figure S2: (a) and (b) show the two lowest energy NH stretch eigenfunctions and corresponding potentials in S₁ plotted as a function of bond length. The zero of energy is the true calculated potential minimum of the excited state. Remaining coordinates values were chosen to minimize E(v=0) in (a) and E(v=1) in (b). In (a) there is 99 cm⁻¹ of energy at the bottom of the well; in (b) there is 1202 cm⁻¹ of energy. In (a) E(v=0) is 1618 cm⁻¹ and E(v=1) is 4542 cm⁻¹. In (b) E(v=0) is 2296 cm⁻¹ and E(v=1) is 3900 cm⁻¹. The energy difference between 4542 and 3900 cm⁻¹ will get deposited into the remaining degrees of freedom. Results are for excited states using TD/B3LYP/6-311++(d,p) level of theory with dispersion. (c) and (d) displays analogous results for the S₁ state of the ND stretch. The difference between vertical and minimum energies for the $v_{ND} = 1$ state is $\Delta E_s = 151$ cm⁻¹ compared to the analogous 642 cm⁻¹ value found for the NH stretch.