Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

## **Supplementary Materials for**

## Molecular-Scale Engineering of the Charge-Transfer Excited States in Non-Covalently Bound

## Zn-Porphyrin and Carbon Fullerene based Donor-Acceptor Complex

Raka Ahmed and Arun K Manna

Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati,

Andhra Pradesh 517506, India

Corresponding Author E-mail: arun@iittp.ac.in

**Table S1:** Correspondence between HOMO and IP, and LUMO and EA calculated using OT-RSH/6-31G (d) for all monomers (PCBM, ZnPor, ZnChl and ZnBChl) and three D-A complexes (ZnPor@PCBM, ZnChl@PCBM and ZnBChl@PCBM). Electronic HOMO-LUMO gaps ( $\Delta E_{H-L}$ ) calculated using OT-RSH and B3LYP are also provided for comparison. All energies are in eV.

| Systems     | НОМО | IP     | LUMO | EA     | $\Delta \boldsymbol{E}_{\boldsymbol{H}-\boldsymbol{L}}$ |        |
|-------------|------|--------|------|--------|---------------------------------------------------------|--------|
|             |      | (ΔSCF) |      | (ΔSCF) | B3LYP                                                   | OT-RSH |
| РСВМ        | -7.3 | -7.3   | -2.0 | -2.0   | 2.6                                                     | 5.3    |
| ZnPor       | -6.6 | -6.6   | -1.0 | -1.0   | 3.1                                                     | 5.6    |
| ZnChl       | -6.2 | -6.2   | -1.0 | -1.0   | 2.7                                                     | 5.2    |
| ZnBChl      | -5.6 | -5.6   | -1.1 | -1.1   | 2.1                                                     | 4.5    |
| ZnPor@PCBM  | -6.3 | -6.3   | -2.0 | -2.0   | 2.1                                                     | 4.3    |
| ZnChl@PCBM  | -6.0 | -6.0   | -2.0 | -2.0   | 1.7                                                     | 4.0    |
| ZnBChl@PCBM | -5.4 | -5.4   | -2.0 | -2.0   | 1.2                                                     | 3.4    |

**Table S2:** Low-lying Q-band, B-band and CT excited-electronic states for all monomers and three D-A complexes calculated in the gas-phase using TDDFT/OT-RSH. All energies are in eV. Oscillator strengths are listed within bracket. H and L stand for HOMO and LUMO, respectively. LE and CT indicate local and charge-transfer excitation, respectively. Percentage of significant MO configuration state function (CSF) for each excited-state is also provided.

| System | Excitation  | Important FMO    | Nature of  |
|--------|-------------|------------------|------------|
|        | Energy      | Contribution (%) | Electronic |
|        |             |                  | State      |
| PCBM   | 2.3(0.0020) | H→L(92)          | LE         |
|        | 2.4(0.0000) | H→L+1(82)        | LE         |
|        | 2.4(0.0000) | H-2→L(69)        | LE         |
|        | 2.4(0.0000) | H-1→L(71)        | LE         |

| ZnPor      | 2.4 (0.0038) | H→L(36)                                                              | LE (Q)     |
|------------|--------------|----------------------------------------------------------------------|------------|
|            |              | H-1→L+1(33)                                                          |            |
|            | 2.4 (0.0038) | $H-1 \rightarrow L(33); H \rightarrow L+1(36)$                       | LE (Q)     |
|            | 3.5 (0.0001) | H-2→L(99)                                                            | LE         |
|            | 3.5 (0.0001) | H-2→L+1(99)                                                          | LE         |
|            | 3.7(1.0126)  | $H-1 \rightarrow L+1(48); H \rightarrow L(47)$                       | LE (B)     |
|            | 3.7 (1.0131) | $H \rightarrow L+1(47); H-1 \rightarrow L(48)$                       | LE (B)     |
| ZnChl      | 2.3(0.1294)  | H→L(81)                                                              | LE(Q)      |
|            | 2.6(0.0014)  | H-1→L(57); H→L+1(41)                                                 | LE         |
|            | 3.5(0.0003)  | H-2→L(98)                                                            | LE         |
|            | 3.7(0.9908)  | H→L+1(57); H-1→L(39)                                                 | LE(B)      |
| ZnBChl     | 1.9(0.2740)  | H→L(94)                                                              | LE(Q)      |
|            | 2.5(0.0411)  | $H-1 \rightarrow L(71); H \rightarrow L+1(28)$                       | LE         |
|            | 3.4(0.0002)  | H-3→L(99)                                                            | LE         |
|            | 3.6(0.0000)  | H-2→L(97)                                                            | LE         |
|            | 3.9(0.8161)  | H→L+1(64)                                                            | LE(B)      |
|            | 4.0(0.2523)  | H-4→L(81)                                                            | LE         |
| ZnPor@PCBM | 2.1(0.0005)  | $H \rightarrow L(34); H \rightarrow L+1(32); H-2 \rightarrow L(18)$  | Partial CT |
|            |              |                                                                      | [LE(A)+CT] |
|            | 2.2(0.0015)  | H-2→ $L(37); H→L+1(31)$                                              | Partial CT |
|            |              |                                                                      | [LE(A)+CT] |
|            | 2.3(0.0007)  | $H \rightarrow L+2(9); H-1 \rightarrow L(14); H-2 \rightarrow L(20)$ | Partial CT |
|            |              | H-4→L(10)                                                            | [LE(A)+CT] |
|            | 2.3(0.0002)  | $H-1 \rightarrow L+1(33); H-2 \rightarrow L+1(24)$                   | Partial CT |
|            |              |                                                                      | [LE(A)+CT] |
|            | 2.3(0.0002)  | $H-1 \rightarrow L(14); H-2 \rightarrow L+1(18)$                     | Partial CT |
|            |              | H-3→L(44)                                                            | [LE(A)+CT] |
|            | 2.3(0.0003)  | H→L+2(22); H-4→L(42)                                                 | Partial CT |
|            |              |                                                                      | [LE(A)+CT] |
|            | 2.3(0.0001)  | $H-1 \rightarrow L+1(17); H-2 \rightarrow L+1(24)$                   | Partial CT |
|            |              | H-3→L(30)                                                            | [LE(A)+CT] |
|            | 2.4(0.0020)  | $H \rightarrow L(16); H \rightarrow L+2(37); H-4 \rightarrow L(13)$  | Partial CT |
|            |              |                                                                      | [LE(A)+CT] |
|            | 2.4(0.0010)  | H-1→L+2(19); H-1→L+3(13)                                             | Q+CT       |

|             |              | H-1→L+4(13)                                                               |               |
|-------------|--------------|---------------------------------------------------------------------------|---------------|
|             | 2.4(0.0004)  | $H \rightarrow L+3(5); H \rightarrow L+4(31); H-1 \rightarrow L+3(27)$    | Q             |
|             | 3.4(0.1625)  | H→L+4(15); H-1→L+3(16)                                                    | В             |
|             | 3.4(0.2334)  | $H \rightarrow L+3(11); H \rightarrow L+4(13);$                           | В             |
|             |              | H-1→L+3(15); H-1→L+4(11)                                                  |               |
| ZnChl@PCBM  | 1.9 (0.0007) | $H \rightarrow L$ (38); $H \rightarrow L+1$ (53); $H \rightarrow L+5$ (5) | СТ            |
|             | 2.0 (0.0004) | $H \rightarrow L (37); H \rightarrow L+1 (31); H \rightarrow L+2 (26)$    | СТ            |
|             | 2.1 (0.0020) | $H \rightarrow L (11); H \rightarrow L+2 (39)$                            | СТ            |
|             |              | H-1→L (13); H-1→L+1 (17)                                                  |               |
|             | 2.1 (0.0008) | $H \rightarrow L$ (8); $H \rightarrow L+2$ (27); $H-1 \rightarrow L$ (17) | СТ            |
|             |              | H-1→L+1 (24); H-2→L (9)                                                   |               |
|             | 2.2 (0.0023) | H-1→L+1 (26)                                                              | Partial CT    |
|             |              | H-2→L(40)                                                                 | [LE(A) + CT]  |
|             | 2.3 (0.0008) | H-1→L (19); H-1→L+2 (23)                                                  | Partial CT    |
|             |              | H-2→L (28)                                                                | [LE(A) + CT]  |
|             | 2.3 (0.0042) | H-2→L+1 (46); H-3→L (23)                                                  | LE (A)        |
|             | 2.3 (0.0532) | H→L+3 (50); H-1→L+2 (10)                                                  | Q             |
|             |              | H-1→L+6 (10); H-2→L+1 (10)                                                |               |
|             | 3.5 (0.1958) | $H \rightarrow L+6 (35); H-1 \rightarrow L+3 (14)$                        | CT + B        |
| ZnBChl@PCBM | 1.3 (0.0006) | $H \rightarrow L (33); H \rightarrow L+1 (60); H \rightarrow L+5 (5)$     | СТ            |
|             | 1.4 (0.0002) | H→L (48); H→L+1 (26)                                                      | Partial CT    |
|             |              | H→L+2 (22)                                                                | [L.E(D) + CT] |
|             | 1.5 (0.0005) | $H \rightarrow L (17); H \rightarrow L+1 (8)$                             | Partial CT    |
|             |              | H→L+2 (71)                                                                | [L.E(D) + CT] |
|             | 2.0 (0.1497) | H→L+3 (81)                                                                | Q             |
|             | 3.9 (0.0842) | $\text{H-9} \rightarrow \text{L+3 (14); H} \rightarrow \text{L+9 (8)}$    | CT + B        |

**Table S3:** Gas-phase exciton binding  $(E_{xb})$  energies for the lowest-excited CT state  $(CT_1)$  for all three D-A complexes calculated using B3LYP and OT-RSH functionals.

| D-A Complex | $E_{xb}$ (eV) |        |  |  |  |
|-------------|---------------|--------|--|--|--|
|             | B3LYP         | OT-RSH |  |  |  |
| ZnPor@PCBM  | 0.4           | 2.2    |  |  |  |
| ZnChl@PCBM  | 0.4           | 2.1    |  |  |  |
| ZnBChl@PCBM | 0.4           | 2.1    |  |  |  |

| <b>D-A Complex</b> | <i>S</i> <sub>1</sub> |        | Q-band |        | <b>B-band</b> |        |
|--------------------|-----------------------|--------|--------|--------|---------------|--------|
|                    | B3LYP                 | OT-RSH | B3LYP  | OT-RSH | B3LYP         | OT-RSH |
| PCBM               | 1.9                   | 2.3    | -      | -      | -             | -      |
| ZnPor              | 2.4                   | 2.4    | 2.4    | 2.4    | 3.5           | 3.7    |
| ZnChl              | 2.4                   | 2.3    | 2.4    | 2.3    | 3.6           | 3.7    |
| ZnBChl             | 2.0                   | 1.9    | 2.1    | 1.9    | 3.8           | 3.9    |
| ZnPor@PCBM         | 1.7                   | 2.1    | 2.4    | 2.4    | 3.1           | 3.4    |
| ZnChl@PCBM         | 1.3                   | 1.9    | 2.3    | 2.3    | 3.1           | 3.5    |
| ZnBChl@PCBM        | 0.8                   | 1.3    | 2.0    | 2.0    | 4.0           | 3.9    |

**Table S4:** Comparison of gas-phase excited-state energies (the lowest-excited  $S_1$ , Q and B-band electronic states) for all monomers and D-A complexes calculated using B3LYP and OT-RSH functionals. All energies are in eV.

**Table S5:** Calculated solvation energies considering both partial and full charge-separation (CS) for the lowest CT state (*i.e.*,  $CT_1$ ) in polar solvent DMF. Reorganization energies ( $\lambda_i$ ) obtained from DFT and CDFT methods considering a full CS are also listed for comparison. All energies are in eV.

| D-A Complex | Solvation          | Energy | $\lambda_i$ |       |  |
|-------------|--------------------|--------|-------------|-------|--|
|             | Partial CS Full CS |        | DFT         | CDFT  |  |
| ZnPor@PCBM  | 0.05               | 0.45   | 0.143       | 0.234 |  |
| ZnChl@PCBM  | 0.30               | 0.40   | 0.142       | 0.210 |  |
| ZnBChl@PCBM | 0.29               | 0.40   | 0.139       | 0.158 |  |

**Table S6:** Calculated reorganization energy for the D-A complex ( $\lambda_i$ ) using CDFT optimized CTstate geometry and for the solvent ( $\lambda_s$ ) using modified Marcus two-sphere model considering both partial and full charge-separation (CS) for the lowest CT electronic-state (*i.e.*, *CT*<sub>1</sub>) in polar solvent DMF. All energies are in eV.

| <b>D-A Complex</b> | $\lambda_i$  |       | $\lambda_s$ |       |  |
|--------------------|--------------|-------|-------------|-------|--|
|                    | Partial Full |       | Partial     | Full  |  |
|                    | CS           | CS    | CS          | CS    |  |
| ZnPor@PCBM         | 0.064        | 0.234 | 0.132       | 0.527 |  |
| ZnChl@PCBM         | 0.176        | 0.210 | 0.428       | 0.528 |  |
| ZnBChl@PCBM        | 0.131        | 0.158 | 0.432       | 0.534 |  |

**Table S7:** Calculated electronic couplings  $(V_{el})$ , driving forces ( $\Delta E$ ), activation energy ( $E_a$ ) for CT in DMF, and also total reorganization energy ( $\lambda_r = \lambda_i + \lambda_s$ ) considering CDFT-optimized CT geometry for estimating  $\lambda_i$ , and the Marcus forward ( $k_f$ ) and backward ( $k_b$ ) CT rates (in s<sup>-1</sup>) calculated at 298 K considering CT-state associated with partial (values without bracket) and full CS (values within bracket). All energies are in eV.

| <b>D-A Complex</b> | V <sub>el</sub> | ΔΕ      | $\lambda_r$ | E <sub>a</sub> | CT Rate                |                         |                                     |
|--------------------|-----------------|---------|-------------|----------------|------------------------|-------------------------|-------------------------------------|
|                    |                 |         |             |                | k <sub>f</sub>         | k <sub>b</sub>          | $\frac{\mathbf{k}_f}{\mathbf{k}_b}$ |
| ZnPor@PCBM         | 0.012           | 0.414   | 0.196       | 0.061          | $5.1 \times 10^{11}$   | $5.1 \times 10^{4}$     | $1.0 \times 10^{7}$                 |
|                    |                 | (0.984) | (0.761)     | (0.016)        | $(1.5 \times 10^{12})$ | $(3.3 \times 10^{-5})$  | $(4.5 \times 10^{16})$              |
| ZnChl@PCBM         | 0.035           | 0.876   | 0.604       | 0.031          | $8.0 \times 10^{12}$   | $1.2 \times 10^{-2}$    | $6.7 \times 10^{14}$                |
|                    |                 | (1.010) | (0.738)     | (0.025)        | $(9.0 \times 10^{12})$ | $(7.5 \times 10^{-5})$  | $(1.2 \times 10^{17})$              |
| ZnBChl@PCBM        | 0.026           | 1.121   | 0.563       | 0.138          | $6.9 \times 10^{10}$   | $7.6 \times 10^{-9}$    | 9.1 × 10 <sup>18</sup>              |
|                    |                 | (1.258) | (0.692)     | (0.116)        | $(1.5 \times 10^{11})$ | $(8.0 \times 10^{-11})$ | $(1.9 \times 10^{21})$              |



**Figure S1:** Non-covalent interactions (NCI) plots for all three D-A complexes. Blue, green and red coloured iso-surfaces indicate the strong, weak and repulsive interactions, respectively. An iso-value of  $0.004 \text{ e/Å}^3$  is used. D-A interfacial green coloured iso-surfaces clearly suggest the presence of weak non-covalent dispersion interactions.



**Figure S2:** FMOs iso-surfaces for all monomers (isolated donors and acceptor) calculated using OT-RSH/6-31G (d). HOMO and LUMO energies are also listed in eV.



**Figure S3:** Localization of quasi-electron (yellow) and quasi-hole (cyan) densities in the lowest CT excited-state (*i.e.*,  $CT_1$ ) for the three D-A complexes calculated using OT-RSH/6-31G (d). An iso-value of 0.0005 e/Å<sup>3</sup> is used to plot these density iso-surfaces.