# Supplemental Information for 'Pressure-dependent kinetics of isobutanol peroxy isomers'

Mark Jacob Goldman<sup>†</sup>, Nathan Wa-Wai Lee<sup>†</sup>, Jesse H. Kroll<sup>†</sup> & William H. Green<sup>†</sup>

July 23, 2020

† Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

### **Overview of Supplemental Information**

- S1 Contains the product branching when changing barrier heights, collision rate, and the method of obtaining k(T,P)
- S2 Contains the range of values of branching ratios and overall reactions rates from the Monte carlo simulations
- S3 Contains videos of each reaction's internal reaction coordinate calculation
- S4 Contains figures not described in the above categories

## S1 Product branching sensitivity analysis

This section contains figures of the product branching when changing barrier heights, collision rate, and the method of obtaining k(T,P).



Figure S1: To observe sensitivity to barrier hights,  $\alpha$ AdductFromRO2 was increased by 13 kJ/mol,  $\beta$ - $\gamma$ HO2elimFromRO2 was increased by 10 kJ/mol (corresponding to the barrier height in Sun et al.), and  $\gamma$ H2OForm was decreased by 6 kJ/mol (corresponding to the barrier height in Welz et al.). The major products formed and branching ratio of alkyl + O<sub>2</sub> reactions and peroxy reactions for the  $\alpha$ ,  $\beta$ , and  $\gamma$  networks at various temperatures and pressures. The structures indicate the major product from the reaction. Shading indicates the fraction going to the major pathway indicated, with cutoffs at 90%, 75%, and 40%. Text gives a qualitative description to the different colors.



Figure S2: To observe sensitivity to the collisional energy, the collisional energy transfer of all isomers was decreased by a factor of two. The major products formed and branching ratio of alkyl +  $O_2$  reactions and peroxy reactions for the  $\alpha$ ,  $\beta$ , and  $\gamma$  networks at various temperatures and pressures. The structures indicate the major product from the reaction. Shading indicates the fraction going to the major pathway indicated, with cutoffs at 90%, 75%, and 40%. Text gives a qualitative description to the different colors.



Figure S3: To observe sensitivity to the method used, modified strong collision approximation was used instead of reservoir state approximation. The major products formed and branching ratio of  $alkyl + O_2$  reactions and peroxy reactions for the  $\alpha$ ,  $\beta$ , and  $\gamma$  networks at various temperatures and pressures. The structures indicate the major product from the reaction. Shading indicates the fraction going to the major pathway indicated, with cutoffs at 90%, 75%, and 40%. Text gives a qualitative description to the different colors.

## S2 Branching ratio confidence intervals

Using the Monte carlo generated networks, uncertainty on the branching ratios (Tables S1-S18) and on the overall rates (Tables S19-S21) for the reaction between  $R + O_2$  and unimolecular  $RO_2$  radicals.

For these runs, the varied energy levels of stationary points  $(E_0)$ , rates of reactions used in inverse Laplace transform  $(r_{A+B})$ , the exponent in the energy transfer expression  $(\langle E_{down} \rangle = A \times (T/300K)^n)$ , and the method used to solve for phenomenological rate constants (reservoir state or modified strong collision) showed up as important factors in the uncertainty of branching ratios and/or overall reaction rates, based on the Spearman rank correlation value,  $\tau$ .

Table S1: Branching ratio uncertainty for  $\alpha R + O2$  at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                                                                                                                                                     | 5%                                               | 50%                       | 95%                       | factor                                                                      | τ                         | factor                                                             | τ                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|---------------------------|-----------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|----------------------------|
| $\begin{array}{ccc} O2 + \alpha R & \Longrightarrow & HO2 + isobutanal \\ O2 + \alpha R & \rightleftharpoons & \alpha RO2 \\ O2 + \alpha R & \rightleftharpoons & ipropyl + performic\_acid \end{array}$ | $0.387 \\ 2 \times 10^{-12} \\ 5 \times 10^{-5}$ | $0.990 \\ 0.003 \\ 0.001$ | $1.000 \\ 0.558 \\ 0.017$ | αAdductFromRO2 $E_0$<br>αAdductFromRO2 $E_0$<br>α-βscissionFromAlkoxy $E_0$ | -0.547<br>0.519<br>-0.619 | reservoir state<br>reservoir state<br>$\alpha$ AdductFromRO2 $E_0$ | $0.453 \\ -0.460 \\ 0.509$ |

Table S2: Branching ratio uncertainty for  $\alpha R + O2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                              | 5%                  | 50%               | 95%   | factor                                      | τ      | factor                       | τ      |
|---------------------------------------------------|---------------------|-------------------|-------|---------------------------------------------|--------|------------------------------|--------|
| $O2 + \alpha R \iff HO2 + isobutanal$             | 0.356               | 0.971             | 0.999 | reservoir state                             | 0.518  | α<br>Adduct<br>FromRO2 $E_0$ | -0.513 |
| $O2 + \alpha R \iff \alpha RO2$                   | $1 \times 10^{-11}$ | 0.002             | 0.560 | reservoir state                             | -0.539 | $\alpha$ AdductFromRO2 $E_0$ | 0.450  |
| $O2 + \alpha R \implies ipropyl + performic_acid$ | $9{	imes}10^{-4}$   | 0.007             | 0.063 | $\alpha$ - $\beta$ scissionFromAlkoxy $E_0$ | -0.575 | $\alpha$ AdductFromRO2 $E_0$ | 0.548  |
| $O2 + \alpha R \iff \alpha a dduct$               | $1 \times 10^{-15}$ | $7{	imes}10^{-8}$ | 0.011 | reservoir state                             | -0.426 | $r_{isobutanal+HO2}$         | -0.375 |

Table S3: Branching ratio uncertainty for  $\alpha R + O2$  at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                              | 5%                  | 50%                | 95%   | factor                                      | τ      | factor                       | τ      |
|---------------------------------------------------|---------------------|--------------------|-------|---------------------------------------------|--------|------------------------------|--------|
| $O2 + \alpha R \iff HO2 + isobutanal$             | 0.275               | 0.940              | 0.992 | reservoir state                             | 0.564  | $\alpha$ AdductFromRO2 $E_0$ | -0.467 |
| $O2 + \alpha R \implies \alpha RO2$               | $4 \times 10^{-12}$ | $4 \times 10^{-4}$ | 0.653 | reservoir state                             | -0.601 | $\alpha$ AdductFromRO2 $E_0$ | 0.404  |
| $O2 + \alpha R \implies ipropyl + performic_acid$ | 0.005               | 0.029              | 0.165 | $\alpha$ - $\beta$ scissionFromAlkoxy $E_0$ | -0.533 | $\alpha$ AdductFromRO2 $E_0$ | 0.533  |
| $O2 + \alpha R \implies \alpha a dduct$           | $2 \times 10^{-16}$ | $3 \times 10^{-9}$ | 0.012 | reservoir state                             | -0.519 | $r_{isobutanal+HO2}$         | -0.327 |

Table S4: Branching ratio uncertainty for  $\alpha RO2$  at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                      | 5%                                       | 50%              | 95%              | factor                               | τ               | factor                                                                                | τ     |
|---------------------------------------------------------------------------|------------------------------------------|------------------|------------------|--------------------------------------|-----------------|---------------------------------------------------------------------------------------|-------|
| $\alpha RO2 \iff HO2 + isobutanal$<br>$\alpha adduct \implies \alpha BO2$ | $9 \times 10^{-4}$<br>$3 \times 10^{-4}$ | $0.549 \\ 0.453$ | $1.000 \\ 0.999$ | isobutanal $E_0$<br>isobutanal $E_0$ | -0.591<br>0.591 | $\begin{array}{c} \alpha \text{adduct } E_0 \\ \alpha \text{adduct } E_0 \end{array}$ | 0.386 |

Table S5: Branching ratio uncertainty for  $\alpha RO2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                                                                                          | 5%                          | 50%              | 95%                                         | factor                                                                                | τ               | factor                            | τ               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|---------------------------------------------|---------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------------|
| $\begin{array}{c} \alpha \mathrm{RO2} \iff \mathrm{HO2} + \mathrm{isobutanal} \\ \alpha \mathrm{adduct} \iff \alpha \mathrm{RO2} \end{array}$ | $0.433 \\ 7 \times 10^{-8}$ | $0.997 \\ 0.002$ | $\begin{array}{c} 1.000\\ 0.568\end{array}$ | $\begin{array}{l} \alpha \text{adduct } E_0 \\ \alpha \text{adduct } E_0 \end{array}$ | 0.440<br>-0.459 | isobutanal $E_0$ isobutanal $E_0$ | -0.355<br>0.400 |

Table S6: Branching ratio uncertainty for  $\alpha RO2$  at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

|                                                                        | -                   | -                  |       |                                   |        |                              |        |
|------------------------------------------------------------------------|---------------------|--------------------|-------|-----------------------------------|--------|------------------------------|--------|
| path                                                                   | 5%                  | 50%                | 95%   | factor                            | τ      | factor                       | τ      |
| $\alpha RO2 \implies HO2 + isobutanal$                                 | 0.678               | 0.998              | 1.000 | α<br>Adduct<br>FromRO2 $E_0$      | -0.476 | reservoir state              | 0.435  |
| $\alpha adduct \iff \alpha RO2$                                        | $2 \times 10^{-10}$ | $1{\times}10^{-5}$ | 0.172 | $\alpha$ adduct $E_0$             | -0.449 | reservoir state              | -0.437 |
| $O2 + \alpha R \implies \alpha RO2$                                    | $3 \times 10^{-12}$ | $8{	imes}10^{-6}$  | 0.086 | $r_{\alpha R+O_2}$                | 0.651  | $\alpha$ AdductFromRO2 $E_0$ | 0.412  |
| $\alpha \mathrm{RO2} \iff \mathrm{ipropyl} + \mathrm{performic\_acid}$ | $2 \times 10^{-7}$  | $5 \times 10^{-4}$ | 0.028 | $\alpha {\rm AdductFrom RO2}~E_0$ | 0.660  | reservoir state              | -0.325 |

Table S7: Branching ratio uncertainty for  $\beta R + O2$  at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                                                                                     | 5%                          | 50%                         | 95%                                          | factor                             | τ                | factor                                                                            | τ               |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|----------------------------------------------|------------------------------------|------------------|-----------------------------------------------------------------------------------|-----------------|
| $\begin{array}{ccc} O2 + \beta R & \rightleftharpoons & \beta RO2 \\ O2 + \beta R & \rightleftharpoons & OH + trisub\_epoxy \end{array}$ | $0.955 \\ 2 \times 10^{-6}$ | $0.998 \\ 2 \times 10^{-4}$ | $\begin{array}{c} 1.000\\ 0.011 \end{array}$ | $β$ RO2 $E_0$<br>β-αQOOHIsom $E_0$ | -0.573<br>-0.705 | $\begin{array}{l} \beta \mathrm{R} \ E_0 \\ \beta \mathrm{RO2} \ E_0 \end{array}$ | -0.402<br>0.423 |

Table S8: Branching ratio uncertainty for  $\beta R + O2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

|                                             | 1                  | 1     |       |                                         |        |                                       |        |
|---------------------------------------------|--------------------|-------|-------|-----------------------------------------|--------|---------------------------------------|--------|
| path                                        | 5%                 | 50%   | 95%   | factor                                  | τ      | factor                                | τ      |
| $O2 + \beta R \iff \beta RO2$               | 0.786              | 0.982 | 0.999 | $r_{\beta R+O_2}$                       | 0.477  | $\beta RO2 E_0$                       | -0.445 |
| $O2 + \beta R \implies HO2 + ibutenol$      | $6 \times 10^{-5}$ | 0.003 | 0.069 | $\beta$ - $\alpha$ HO2elimFromRO2 $E_0$ | -0.619 | $r_{\beta R+O_2}$                     | -0.458 |
| $O2 + \beta R \implies HO2 + \gamma alkene$ | $6 \times 10^{-5}$ | 0.003 | 0.059 | $\beta$ - $\gamma$ HO2elimFromRO2 $E_0$ | -0.624 | $r_{\beta R+O_2}$                     | -0.490 |
| $O2 + \beta R \implies OH + trisub\_epoxy$  | $4 \times 10^{-5}$ | 0.001 | 0.034 | $\beta$ - $\alpha$ QOOHIsom $E_0$       | -0.638 | $r_{\beta R+O_2}$                     | -0.358 |
| $O2 + \beta R \iff CH2O + OH + acetone$     | $8{	imes}10^{-5}$  | 0.003 | 0.046 | $r_{\beta R+O_2}$                       | -0.391 | $\beta$ Double $\beta$ scission $E_0$ | -0.389 |

Table S9: Branching ratio uncertainty for  $\beta R + O2$  at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                       | 5%                 | 50%   | 95%   | factor                                  | τ      | factor              | τ      |
|--------------------------------------------|--------------------|-------|-------|-----------------------------------------|--------|---------------------|--------|
| $O2 + \beta R \iff \beta RO2$              | 0.292              | 0.922 | 0.997 | reservoir state                         | -0.573 | $\beta RO2 E_0$     | -0.477 |
| $O2 + \beta R \implies HO2 + ibutenol$     | $6{\times}10^{-4}$ | 0.020 | 0.279 | $\beta$ - $\alpha$ HO2elimFromRO2 $E_0$ | -0.539 | reservoir state     | 0.507  |
| $O2 + \beta R \iff HO2 + \gamma alkene$    | $6 \times 10^{-4}$ | 0.019 | 0.265 | $\beta$ - $\gamma$ HO2elimFromRO2 $E_0$ | -0.517 | reservoir state     | 0.490  |
| $O2 + \beta R \iff CH2O + OH + acetone$    | $2 \times 10^{-4}$ | 0.009 | 0.117 | reservoir state                         | 0.637  | $\beta RO2 E_0$     | 0.412  |
| $O2 + \beta R \implies OH + trisub\_epoxy$ | $1 \times 10^{-4}$ | 0.005 | 0.123 | β-αQOOHIsom $E_0$                       | -0.535 | reservoir state $\$ | 0.529  |

Table S10: Branching ratio uncertainty for  $\beta$ RO2 at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                   | 5%                  | 50%                | 95%   | factor                                  | τ      | factor                                               | τ      |
|--------------------------------------------------------|---------------------|--------------------|-------|-----------------------------------------|--------|------------------------------------------------------|--------|
| $\beta \text{QOOH}[O] \iff \beta \text{RO2}$           | $3{\times}10^{-5}$  | 0.112              | 0.998 | $\beta \text{QOOH[O]} E_0$              | -0.562 | β-αQOOHIsom $E_0$                                    | 0.471  |
| $\beta \text{QOOH}\alpha \implies \beta \text{RO2}$    | $1 \times 10^{-7}$  | 0.068              | 0.982 | $\beta$ - $\alpha$ QOOHIsom $E_0$       | -0.469 | imaginary freq. $\beta$ - $\alpha$ QOOHIsom          | 0.453  |
| $\beta RO2 \implies OH + trisub\_epoxy$                | $1 \times 10^{-5}$  | 0.037              | 0.902 | $\beta$ - $\alpha$ QOOHIsom $E_0$       | -0.442 | $\beta EpoxyFrom \alpha E_0$                         | -0.374 |
| $\beta RO2 \iff CH2O + OH + acetone$                   | $7 \times 10^{-8}$  | $3{\times}10^{-4}$ | 0.522 | $\beta$ Double $\beta$ scission $E_0$   | -0.754 | β-αQOOHIsom $E_0$                                    | 0.331  |
| $O2 + \beta R \iff \beta RO2$                          | $2 \times 10^{-10}$ | $6 \times 10^{-6}$ | 0.295 | $r_{\beta R+O_2}$                       | 0.665  | $\beta R E_0$                                        | -0.568 |
| $\beta RO2 \implies HO2 + \gamma alkene$               | $7 \times 10^{-8}$  | $2{	imes}10^{-4}$  | 0.207 | $\beta$ - $\gamma$ HO2elimFromRO2 $E_0$ | -0.724 | β-αQOOHIsom $E_0$                                    | 0.344  |
| $\beta RO2 \implies HO2 + ibutenol$                    | $2 \times 10^{-7}$  | $1{\times}10^{-4}$ | 0.060 | $\beta$ - $\alpha$ HO2elimFromRO2 $E_0$ | -0.543 | βHO2elimFromα $E_0$                                  | -0.288 |
| $\beta \text{QOOH}_{\gamma} \implies \beta \text{RO2}$ | $6 \times 10^{-10}$ | $4 \times 10^{-6}$ | 0.032 | β-γQOOHIsom $E_0$                       | -0.574 | imaginary freq. $\beta\text{-}\gamma\text{QOOHIsom}$ | 0.560  |

Table S11: Branching ratio uncertainty for  $\beta RO2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                            | 5%                  | 50%                | 95%   | factor                            | τ      | factor                                  | τ      |
|-------------------------------------------------|---------------------|--------------------|-------|-----------------------------------|--------|-----------------------------------------|--------|
| $O2 + \beta R \implies \beta RO2$               | $3{	imes}10^{-4}$   | 0.489              | 0.998 | $r_{\beta R+O_2}$                 | 0.862  | $\beta R E_0$                           | -0.396 |
| $\beta RO2 \implies OH + trisub\_epoxy$         | $4 \times 10^{-5}$  | 0.021              | 0.662 | $\beta$ - $\alpha$ QOOHIsom $E_0$ | -0.578 | $r_{\beta R+O_2}$                       | -0.564 |
| $\beta RO2 \implies CH2O + OH + acetone$        | $5 \times 10^{-5}$  | 0.027              | 0.624 | $r_{\beta R+O_2}$                 | -0.603 | $\beta$ Double $\beta$ scission $E_0$   | -0.492 |
| $\beta RO2 \implies HO2 + \gamma alkene$        | $3 \times 10^{-5}$  | 0.015              | 0.576 | $r_{\beta R+O_2}$                 | -0.632 | $\beta$ - $\gamma$ HO2elimFromRO2 $E_0$ | -0.593 |
| $\beta RO2 \implies HO2 + ibutenol$             | $2 \times 10^{-5}$  | 0.014              | 0.471 | $r_{\beta R+O_2}$                 | -0.623 | $\beta$ - $\alpha$ HO2elimFromRO2 $E_0$ | -0.539 |
| $\beta \text{QOOH[O]} \iff \beta \text{RO2}$    | $7 \times 10^{-9}$  | $5 \times 10^{-6}$ | 0.514 | reservoir state                   | -0.702 | $\beta$ QOOH[O] $E_0$                   | -0.405 |
| $\beta \text{QOOH}\alpha \iff \beta \text{RO2}$ | $8 \times 10^{-12}$ | $6{	imes}10^{-5}$  | 0.072 | reservoir state                   | -0.500 | βΕροχγ<br>Fromα $E_0$                   | 0.430  |

Table S12: Branching ratio uncertainty for  $\beta$ RO2 at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                             | 5%                  | 50%                | 95%   | factor            | τ      | factor                                  | τ      |
|--------------------------------------------------|---------------------|--------------------|-------|-------------------|--------|-----------------------------------------|--------|
| $O2 + \beta R \implies \beta RO2$                | 0.003               | 0.879              | 1.000 | $r_{\beta R+O_2}$ | 0.915  | $\beta R E_0$                           | -0.314 |
| $\beta RO2 \implies HO2 + \gamma alkene$         | $2 \times 10^{-5}$  | 0.017              | 0.535 | $r_{\beta R+O_2}$ | -0.831 | $\beta$ - $\gamma$ HO2elimFromRO2 $E_0$ | -0.430 |
| $\beta RO2 \implies HO2 + ibutenol$              | $1 \times 10^{-5}$  | 0.017              | 0.544 | $r_{\beta R+O_2}$ | -0.827 | β-αHO2elimFromRO2 $E_0$                 | -0.400 |
| $\beta RO2 \implies CH2O + OH + acetone$         | $2 \times 10^{-5}$  | 0.014              | 0.331 | $r_{\beta R+O_2}$ | -0.812 | $\beta R E_0$                           | 0.294  |
| $\beta RO2 \iff OH + trisub\_epoxy$              | $2 \times 10^{-5}$  | 0.008              | 0.258 | $r_{\beta R+O_2}$ | -0.764 | $\beta$ - $\alpha$ QOOHIsom $E_0$       | -0.442 |
| $\beta \text{QOOH}[O] \implies \beta \text{RO2}$ | $6 \times 10^{-12}$ | $2 \times 10^{-9}$ | 0.084 | reservoir state   | -0.737 | $\beta \text{QOOH[O]} E_0$              | -0.349 |
| $\beta \text{QOOH}\alpha \iff \beta \text{RO2}$  | $1 \times 10^{-14}$ | $1 \times 10^{-7}$ | 0.015 | reservoir state   | -0.688 | βΕροχγ<br>From<br>α $E_0$               | 0.351  |

Table S13: Branching ratio uncertainty for  $\gamma R + O2$  at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                                                                                                                                                   | 5%                                              | 50%                                           | 95%                       | factor                                                                                                         | τ                         | factor                                                                                                                   | τ                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $\begin{array}{ccc} O2 + \gamma R & \rightleftharpoons & \gamma RO2 \\ O2 + \gamma R & \rightleftharpoons & H2O + \gamma aldoxy \\ O2 + \gamma R & \rightleftharpoons & \gamma QOOH\alpha \end{array}$ | $0.930 \\ 2 \times 10^{-6} \\ 1 \times 10^{-7}$ | $0.998 \ 3 \times 10^{-4} \ 5 \times 10^{-4}$ | $1.000 \\ 0.027 \\ 0.024$ | $\gamma$ - $\alpha$ QOOHIsom $E_0$<br>$\gamma$ - $\alpha$ QOOHIsom $E_0$<br>$\gamma$ - $\alpha$ QOOHIsom $E_0$ | 0.607<br>-0.501<br>-0.506 | $\begin{array}{l} \gamma \mathrm{RO2} \ E_{0} \\ \gamma \mathrm{RO2} \ E_{0} \\ \gamma \mathrm{RO2} \ E_{0} \end{array}$ | -0.537<br>0.392<br>0.367 |

Table S14: Branching ratio uncertainty for  $\gamma R + O2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                         | 5%                 | 50%                | 95%   | factor                          | τ      | factor                             | τ      |
|----------------------------------------------|--------------------|--------------------|-------|---------------------------------|--------|------------------------------------|--------|
| $O2 + \gamma R \implies \gamma RO2$          | 0.845              | 0.991              | 0.999 | $\gamma RO2 E_0$                | -0.461 | $\gamma$ - $\alpha$ QOOHIsom $E_0$ | 0.454  |
| $O2 + \gamma R \implies H2O + \gamma aldoxy$ | $1{\times}10^{-5}$ | 0.002              | 0.079 | reservoir state                 | 0.589  | $\gamma$ - $\alpha$ QOOHIsom $E_0$ | -0.417 |
| $O2 + \gamma R \implies OH + disub_c4ether$  | $3 \times 10^{-6}$ | $4{\times}10^{-4}$ | 0.026 | reservoir state                 | 0.510  | $\gamma$ C4EtherFrom $\alpha E_0$  | -0.418 |
| $O2 + \gamma R \iff \gamma QOOH\alpha$       | $2 \times 10^{-9}$ | $3{	imes}10^{-4}$  | 0.021 | $\gamma \text{QOOH} \alpha E_0$ | -0.513 | reservoir state                    | -0.332 |

Table S15: Branching ratio uncertainty for  $\gamma R + O2$  at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                            | 5%                 | 50%                | 95%   | factor                           | τ      | factor                                  | τ      |
|-------------------------------------------------|--------------------|--------------------|-------|----------------------------------|--------|-----------------------------------------|--------|
| $O2 + \gamma R \implies \gamma RO2$             | 0.265              | 0.958              | 0.998 | reservoir state                  | -0.668 | $\gamma RO2 E_0$                        | -0.501 |
| $O2 + \gamma R \implies H2O + \gamma aldoxy$    | $3{\times}10^{-5}$ | 0.009              | 0.378 | reservoir state                  | 0.733  | $\gamma RO2 E_0$                        | 0.395  |
| $O2 + \gamma R \iff OH + disub_c4ether$         | $1{\times}10^{-5}$ | 0.004              | 0.165 | reservoir state                  | 0.705  | $\gamma RO2 E_0$                        | 0.354  |
| $O2 + \gamma R \implies HO2 + \gamma alkene$    | $1{\times}10^{-4}$ | 0.006              | 0.094 | reservoir state                  | 0.622  | $\gamma$ HO2elimFromRO2 $E_0$           | -0.477 |
| $O2 + \gamma R \iff OH + disub_epoxy$           | $3{\times}10^{-5}$ | 0.001              | 0.029 | reservoir state                  | 0.607  | $\gamma$ - $\beta$ QOOHIsom $E_0$       | -0.477 |
| $O2 + \gamma R \iff CH2O + ipropylOOH$          | $2 \times 10^{-5}$ | $9 \times 10^{-4}$ | 0.018 | reservoir state                  | 0.691  | $\gamma RO2 E_0$                        | 0.416  |
| $O2 + \gamma R \implies CH2O + OH + propene3ol$ | $1 \times 10^{-6}$ | $4 \times 10^{-4}$ | 0.012 | reservoir state                  | 0.717  | γDoubleβscissionFrom<br>γ $E_0$         | -0.388 |
| $O2 + \gamma R \iff CH2O + OH + propene1ol$     | $1 \times 10^{-6}$ | $2{	imes}10^{-4}$  | 0.010 | $\operatorname{reservoir}$ state | 0.650  | γ<br>Doubleβscission<br>From<br>α $E_0$ | -0.391 |

Table S16: Branching ratio uncertainty for  $\gamma RO2$  at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                      | 5%                  | 50%                | 95%   | factor                             | τ      | factor                                      | τ      |
|-------------------------------------------|---------------------|--------------------|-------|------------------------------------|--------|---------------------------------------------|--------|
| $\gamma QOOH\alpha \implies \gamma RO2$   | 0.024               | 0.975              | 1.000 | $\gamma$ - $\alpha$ QOOHIsom $E_0$ | -0.502 | $\gamma$ H2OForm $E_0$                      | 0.379  |
| $\gamma RO2 \implies H2O + \gamma aldoxy$ | $1 \times 10^{-6}$  | 0.002              | 0.643 | $\gamma$ H2OForm $E_0$             | -0.700 | $\gamma \text{QOOH} \alpha E_0$             | 0.507  |
| $\gamma QOOH\gamma \iff \gamma RO2$       | $1 \times 10^{-7}$  | $4 \times 10^{-4}$ | 0.673 | $\gamma$ - $\alpha$ QOOHIsom $E_0$ | 0.614  | $\gamma$ - $\gamma$ QOOHIsom $E_0$          | -0.513 |
| $\gamma QOOH\beta \implies \gamma RO2$    | $1 \times 10^{-10}$ | $6 \times 10^{-6}$ | 0.077 | $\gamma$ - $\beta$ QOOHIsom $E_0$  | -0.561 | imaginary freq. $\gamma$ - $\beta$ QOOHIsom | 0.511  |
| $O2 + \gamma R \implies \gamma RO2$       | $1 \times 10^{-12}$ | $2 \times 10^{-7}$ | 0.013 | $r_{\gamma R+O_2}$                 | 0.653  | $\gamma R E_0$                              | -0.532 |

Table S17: Branching ratio uncertainty for  $\gamma RO2$  at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                           | 5%                 | 50%                | 95%   | factor                            | τ      | factor             | τ      |
|----------------------------------------------------------------|--------------------|--------------------|-------|-----------------------------------|--------|--------------------|--------|
| $O2 + \gamma R \iff \gamma RO2$                                | $2{\times}10^{-5}$ | 0.179              | 0.995 | $r_{\gamma R+O_2}$                | 0.849  | $\gamma R E_0$     | -0.359 |
| $\gamma RO2 \implies H2O + \gamma aldoxy$                      | $1 \times 10^{-4}$ | 0.077              | 0.946 | reservoir state                   | 0.481  | $r_{\gamma R+O_2}$ | -0.421 |
| $\gamma QOOH\alpha \implies \gamma RO2$                        | $5 \times 10^{-6}$ | 0.065              | 0.931 | $\gamma$ QOOH $\alpha E_0$        | -0.447 | reservoir state    | -0.441 |
| $\gamma QOOH\gamma \implies \gamma RO2$                        | $1 \times 10^{-7}$ | 0.001              | 0.315 | $\gamma$ QOOH $\gamma E_0$        | -0.495 | reservoir state    | -0.461 |
| $\gamma RO2 \iff OH + disub_c4ether$                           | $7 \times 10^{-6}$ | 0.003              | 0.261 | $\gamma$ C4EtherFroma $E_0$       | -0.569 | reservoir state    | 0.387  |
| $\gamma RO2 \implies OH + disub\_epoxy$                        | $2 \times 10^{-6}$ | $6{	imes}10^{-4}$  | 0.065 | $\gamma$ - $\beta$ QOOHIsom $E_0$ | -0.646 | $r_{\gamma R+O_2}$ | -0.406 |
| $\gamma RO2 \implies HO2 + \gamma alkene$                      | $2 \times 10^{-6}$ | $9 \times 10^{-4}$ | 0.052 | $\gamma$ HO2elimFromRO2 $E_0$     | -0.533 | $r_{\gamma R+O_2}$ | -0.479 |
| $\gamma \mathrm{RO2} \iff \mathrm{CH2O} + \mathrm{ipropylOOH}$ | $5 \times 10^{-6}$ | $7{\times}10^{-4}$ | 0.031 | $r_{\gamma R+O_2}$                | -0.509 | γ-αQOOHIsom $E_0$  | 0.399  |

Table S18: Branching ratio uncertainty for  $\gamma RO2$  at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each pathway are shown using data from Monte carlo simulations. For each branch point, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                                                                         | 5%                  | 50%                | 95%   | factor             | τ      | factor                                            | τ      |
|------------------------------------------------------------------------------|---------------------|--------------------|-------|--------------------|--------|---------------------------------------------------|--------|
| $O2 + \gamma R \implies \gamma RO2$                                          | $6 \times 10^{-4}$  | 0.764              | 0.999 | $r_{\gamma R+O_2}$ | 0.914  | $\gamma R E_0$                                    | -0.270 |
| $\gamma RO2 \iff H2O + \gamma aldoxy$                                        | $6 \times 10^{-5}$  | 0.029              | 0.739 | $r_{\gamma R+O_2}$ | -0.661 | reservoir state                                   | 0.454  |
| $\gamma QOOH\alpha \iff \gamma RO2$                                          | $1 \times 10^{-9}$  | $2{	imes}10^{-4}$  | 0.534 | reservoir state    | -0.657 | $\gamma$ QOOH $\alpha E_0$                        | -0.402 |
| $\gamma RO2 \implies OH + disub_c4ether$                                     | $1 \times 10^{-5}$  | 0.007              | 0.366 | $r_{\gamma R+O_2}$ | -0.659 | reservoir state                                   | 0.379  |
| $\gamma RO2 \implies HO2 + \gamma alkene$                                    | $5 \times 10^{-6}$  | 0.008              | 0.220 | $r_{\gamma R+O_2}$ | -0.800 | $\gamma$ HO2elimFromRO2 $E_0$                     | -0.362 |
| $\gamma QOOH\gamma \implies \gamma RO2$                                      | $2 \times 10^{-10}$ | $1 \times 10^{-5}$ | 0.183 | reservoir state    | -0.689 | $\gamma \text{QOOH} \gamma E_0$                   | -0.404 |
| $\gamma RO2 \iff OH + disub\_epoxy$                                          | $2 \times 10^{-6}$  | 0.002              | 0.104 | $r_{\gamma R+O_2}$ | -0.742 | $\gamma$ - $\beta$ QOOHIsom $E_0$                 | -0.461 |
| $\gamma RO2 \iff CH2O + ipropylOOH$                                          | $6 \times 10^{-6}$  | 0.002              | 0.055 | $r_{\gamma R+O_2}$ | -0.786 | $\gamma$ AlkoxyIsom $E_0$                         | -0.346 |
| $\gamma RO2 \iff OH + \gamma aldol$                                          | $3 \times 10^{-7}$  | $3 \times 10^{-4}$ | 0.021 | $r_{\gamma R+O_2}$ | -0.680 | $\gamma$ AldolFrom $\alpha E_0$                   | -0.431 |
| $\gamma RO2 \iff CH2O + OH + propene1ol$                                     | $1 \times 10^{-7}$  | $2{	imes}10^{-4}$  | 0.016 | $r_{\gamma R+O_2}$ | -0.696 | $\gamma$ Double $\beta$ scissionFrom $\alpha E_0$ | -0.399 |
| $\gamma \mathrm{RO2} \iff \mathrm{CH2O} + \mathrm{OH} + \mathrm{propene3ol}$ | $4{	imes}10^{-8}$   | $1{	imes}10^{-4}$  | 0.014 | $r_{\gamma R+O_2}$ | -0.694 | reservoir state                                   | 0.420  |

Table S19: Overall rate uncertainty at 300 K and  $1 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each reaction are shown using data from Monte carlo simulations. For each path, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                               | 5%                    | 50%                  | 95%                  | factor             | τ     | factor                                            | τ      |
|------------------------------------|-----------------------|----------------------|----------------------|--------------------|-------|---------------------------------------------------|--------|
| $O2 + aR \longrightarrow products$ | $2.3{\times}10^{10}$  | $6.2{\times}10^{10}$ | $3.1{	imes}10^{10}$  | $r_{\alpha R+O_2}$ | 1.000 | $\alpha \mathbf{R} \langle E_{down} \rangle \exp$ | 0.079  |
| $O2 + bR \longrightarrow products$ | $2.2{	imes}10^{11}$   | $2.3{	imes}10^7$     | $8.0 \times 10^{12}$ | $r_{\beta R+O_2}$  | 0.999 | imaginary freq. βH2OForm                          | -0.068 |
| $O2 + gR \longrightarrow products$ | $1.1 {	imes} 10^{13}$ | $3.6{	imes}10^{10}$  | $1.6{	imes}10^{10}$  | $r_{\gamma R+O_2}$ | 1.000 | γDouble $\beta$ scissionFromγ $E_0$               | -0.096 |
| aRO2 $\longrightarrow$ products    | $6.0{	imes}10^4$      | 730                  | $2 \times 10^5$      | $\alpha RO2 E_0$   | 0.721 | $\alpha$ AdductFromRO2 $E_0$                      | -0.597 |
| $bRO2 \longrightarrow products$    | $6 \times 10^{-8}$    | 0.002                | $2 \times 10^{-4}$   | $\beta RO2 E_0$    | 0.778 | $\beta$ - $\alpha$ QOOHIsom $E_0$                 | -0.334 |
| $gRO2 \longrightarrow products$    | 0.057                 | $1{\times}10^{-5}$   | 0.065                | $\gamma RO2 E_0$   | 0.746 | $\gamma$ - $\alpha$ QOOHIsom $E_0$                | -0.566 |

Table S20: Overall rate uncertainty at 600 K and  $3 \times 10^5$  Pa. The median and 90% confidence interval of the branching ratio for each reaction are shown using data from Monte carlo simulations. For each path, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| τ      |
|--------|
| 0.079  |
| -0.075 |
| -0.096 |
| -0.409 |
| 0.542  |
| 0.418  |
| τ<br>  |

Table S21: Overall rate uncertainty at 900 K and  $1 \times 10^6$  Pa. The median and 90% confidence interval of the branching ratio for each reaction are shown using data from Monte carlo simulations. For each path, the two parameters with the highest correlation,  $\tau$ , determined using the Spearman rank correlation, are shown with their corresponding values. See S2 for description of the parameter names.

| path                               | 5%                   | 50%                  | 95%                  | factor             | τ      | factor           | τ      |
|------------------------------------|----------------------|----------------------|----------------------|--------------------|--------|------------------|--------|
| $O2 + aR \longrightarrow products$ | $9.1{	imes}10^9$     | $2.4{\times}10^{10}$ | $1.3{	imes}10^{10}$  | $r_{\alpha R+O_2}$ | 0.995  | $\alpha R E_0$   | 0.082  |
| $O2 + bR \longrightarrow products$ | $2.3{	imes}10^{10}$  | $1.8{	imes}10^7$     | $1.9{	imes}10^{10}$  | $r_{\beta R+O_2}$  | 0.872  | $\beta RO2 E_0$  | -0.198 |
| $O2 + gR \longrightarrow products$ | $1.9 \times 10^{11}$ | $2.2 \times 10^{9}$  | $6.3 \times 10^{8}$  | $r_{\gamma R+O_2}$ | 0.895  | reservoir state  | -0.167 |
| $aRO2 \longrightarrow products$    | $2.4{	imes}10^7$     | $2.1 \times 10^{9}$  | $1.0 \times 10^{10}$ | reservoir state    | -0.613 | $\alpha RO2 E_0$ | -0.309 |
| $bRO2 \longrightarrow products$    | $2.5{	imes}10^7$     | $1.4{	imes}10^7$     | $1.7{	imes}10^8$     | $r_{\beta R+O_2}$  | 0.694  | $\beta RO2 E_0$  | 0.362  |
| $gRO2 \longrightarrow products$    | $3.8 \times 10^{9}$  | $1.8 \times 10^{7}$  | $8.8 \times 10^{6}$  | $r_{\gamma R+O_2}$ | 0.649  | $\gamma RO2 E_0$ | 0.349  |

# S3 IRC diagrams

This section shows IRC diagrams for all the reactions in the paper. To view properly, you need a pdf viewer with javascript capabilities, like Adobe Reader. Click on an image to view the IRC calculation.

#### S3.1 $\alpha$ -network

Figure S4: Some of the IRC steps for  $\alpha$ - $\beta$ QOOHIsom

Figure S5: Some of the IRC steps for  $\alpha\text{-}\gamma\text{QOOHIsom}$ 

Figure S6: Some of the IRC steps for  $\alpha AlkoxyIsom$ 

Figure S7: Some of the IRC steps for  $\alpha AlkoxyIsomFrom\gamma$ 

Figure S8: Some of the IRC steps for  $\alpha AlkoxyIsomFrom\gamma$ 

Figure S9: Some of the IRC steps for  $\alpha \mathrm{HO2elimFromRO2}$ 

Figure S10: Some of the IRC steps for  $\alpha \mathrm{HO2elimFromAlkoxy}$ 

Figure S11: Some of the IRC steps for  $\alpha \mathrm{HO2elimFrom}\beta$ 

Figure S12: Some of the IRC steps for  $\alpha \text{Double}\beta \text{scission}$ 

Figure S13: Some of the IRC steps for  $\alpha\text{-}\beta\text{scissionFromAlkoxy}$ 

Figure S14: Some of the IRC steps for  $\alpha\text{-}\beta\text{scissionFrom}\gamma$ 

Figure S15: Some of the IRC steps for  $\alpha \mathrm{Hejection}$ 

Figure S16: Some of the IRC steps for  $\alpha AdductFrom RO2$ 

Figure S17: Some of the IRC steps for  $\alpha \mathrm{C4EtherFrom}\gamma$ 

Figure S18: Some of the IRC steps for  $\alpha \mathrm{EpoxyFrom}\beta$ 

Figure S19: Some of the IRC steps for  $\beta\text{-}\alpha\text{QOOHIsom}$ 

Figure S20: Some of the IRC steps for  $\beta\text{-}\gamma\text{QOOHIsom}$ 

Figure S21: Some of the IRC steps for  $\beta AlkoxyIsom$ 

Figure S22: Some of the IRC steps for  $\beta\text{-}\gamma\text{HO2elimFromRO2}$ 

Figure S23: Some of the IRC steps for  $\beta\text{-}\alpha\text{HO2elimFromRO2}$ 

Figure S24: Some of the IRC steps for  $\beta \mathrm{HO2elimFrom}\alpha$ 

Figure S25: Some of the IRC steps for  $\beta \mathrm{HO2elimFrom}\gamma$ 

Figure S26: Some of the IRC steps for  $\beta\text{-}\beta\text{scissionFromAlkoxy}$ 

Figure S27: Some of the IRC steps for  $\beta \text{EpoxyFrom}\gamma$ 

Figure S28: Some of the IRC steps for  $\beta EpoxyFrom\alpha$ 

Figure S29: Some of the IRC steps for  $\beta H2OForm$ 

S3.3  $\gamma$ -network

Figure S30: Some of the IRC steps for  $\gamma\text{-}\alpha\text{QOOHIsom}$ 

Figure S31: Some of the IRC steps for  $\gamma\text{-}\beta\text{QOOHIsom}$ 

Figure S32: Some of the IRC steps for  $\gamma\text{-}\gamma\text{QOOHIsom}$ 

Figure S33: Some of the IRC steps for  $\gamma AlkoxyIsom$ 

Figure S34: Some of the IRC steps for  $\gamma \mathrm{HO2elimFromRO2}$ 

Figure S35: Some of the IRC steps for  $\gamma \mathrm{HO2elimFrom}\beta$ 

Figure S36: Some of the IRC steps for  $\gamma\text{-}\beta\text{scissionFromAlkoxy}$ 

Figure S37: Some of the IRC steps for  $\gamma \text{Double}\beta \text{scission} \text{From}\gamma$ 

Figure S38: Some of the IRC steps for  $\gamma \text{Double}\beta \text{scissionFrom}\alpha$ 

Figure S39: Some of the IRC steps for  $\gamma C4E ther From \gamma$ 

Figure S40: Some of the IRC steps for  $\gamma \text{EpoxyFrom}\beta$ 

Figure S41: Some of the IRC steps for  $\gamma \text{C4EtherFrom}\alpha$ 

Figure S42: Some of the IRC steps for  $\gamma AlkoxyHabs$ 

Figure S43: Some of the IRC steps for  $\gamma \rm H2OForm$ 

Figure S44: Some of the IRC steps for  $\gamma AdolFrom\alpha$ 



Figure S45: The fraction of excited  $RO_2$  that go back to form  $R + O_2$  for the three surfaces at various temperatures and pressures. Periodic behavior at lower temperatures and high fractions of reaction are likely artifacts created from the sum of all the fitted pressure-dependent rates not perfectly fitting to the high-pressure-limit Arrhenius rate.