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1 Methodology

The ionization energies and the respective Dyson’s orbitals were calculated in this work
using the EKT-SSR method1 which uses the Extended Koopmans’ Theorem (EKT)2,3 in
connection with the state-interaction state-averaged spin-restricted ensemble-referenced
Kohn-Sham (SI-SA-REKS, or SSR) method.4–9 The SSR method is based on ensemble den-
sity functional theory (eDFT), where ground state eDFT10–15 is used to describe the non-
dynamic electron correlation originating in multireference ground states of molecules and
eDFT for ensembles of the ground and excited states16–19 to obtain excitation energies
from a variational time-independent computation.

The ensemble representation of the density and the energy of a multi-reference elec-
tronic state results in the occurrence of the fractional occupation numbers (FONs) of sev-
eral frontier KS orbitals.20–22 In this work, a variant of the SSR method that treats two
fractionally occupied KS orbitals accommodating in total two electrons, i.e., the SSR(2,2)
method, is used. In the SSR(2,2) method, the ground electronic state is approximated by
a perfectly spin-paired singlet (PPS) electronic configuration and the excited state by an
open-shell singlet (OSS) configuration.23 For both electronic configurations, the energy
expression can be written as23

EX =
Lmax

∑
L=1

CX
L E[ρα

L, ρ
β
L] ;

Lmax

∑
L=1

CX
L = 1 , (SI-1)

where X = PPS, OSS and the coefficients CX
L depend on the fractional occupation num-

bers of the active orbitals. The densities of the microstates ρσ
L(r), where σ = α, β is the

spin, are calculated using a common set of orbitals ϕq(r) and the integer and fixed occu-
pation numbers nσ

q,L defined for each microstate.4,8,9

ρσ
L(r) =

occ

∑
q

nσ
q,L|ϕq(r)|2 (SI-2)

For the OSS configuration, the COSS
L coefficients are fixed by spin-symmetry and, for the

PPS configuration, the CPPS
L coefficients are obtained by variational optimization of the

respective FONs; see Refs. 4, 8, 9, and 24 for more detail.
In the case of single-state REKS method,4,5 the PPS configuration alone describes the

ground electronic state of a multi-reference system. In the SA-REKS method,6,8,9 in ac-
cordance with the Gross-Oliveira-Kohn variational principle,16–18 an ensemble of the PPS
and OSS configurations

ESA−REKS =wPPSEPPS
0 + wOSSEOSS

1 (SI-3)
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wPPS + wOSS = 1

is optimized with respect to the FONs and the KS orbitals; the latter are subject to the
orthonormality constraints. In Eq. (SI-3), the subscripts 0 and 1 are added to the ener-
gies of the PPS and the OSS configurations to underline that the former represents the
ground electronic state and the latter represents the excited electronic state. Variational
optimization of the energy (SI-3) results in a set of one-electron equations

fq F̂q ϕq(r) =
occ

∑
p

ϕp(r)εpq (SI-4)

where fq = nq/2 is the average occupation number of the q-th spin-orbital, εpq are the
Lagrange multipliers for the orthonormality constraints, the one-electron Fock operators
F̂q are defined as

F̂q =
1

2 fq

Lmax

∑
L

CSA
L ∑

σ

nσ
q,L F̂σ

L (SI-5)

with the Fock operators F̂σ
L of the individual microstates given by

F̂σ
L = ĥ + ∑

q
∑
σ

nσ
q,L

∫ ϕ∗q(r′)ϕq(r′)
|r− r′| dr′ + Vσ

xc,L(r) (SI-6)

Eq. (SI-4) is solved by the use of the coupling operator technique,25 where the matrix of
the coupling operator

F̂qp =
fq F̂q − fp F̂p

fq − fp
(SI-7)

is repeatedly diagonalized until the convergence (of the energy and the density matrix)
is reached. At each self-consistent field (SCF) iteration, the FONs of the active are deter-
mined by the Newton-Raphson method, see the Supporting Information to Ref. 24 for
more detail.

When the orbitals and the occupation numbers are converged, the following condi-
tions are fulfilled

∀p, q ; εpq = εqp =⇒ 〈ϕp| fq F̂q|ϕq〉 = 〈ϕq| fp F̂p|ϕp〉 (SI-8)

for the elements of the Lagrangian matrix in Eq. (SI-4).25 Note that the off-diagonal La-
grange multipliers between the orbitals with different occupations do not vanish. Hence,
the Lagrange matrix in the SA-REKS one-electron equations (SI-4) does not become diag-
onal upon convergence and its eigenfunctions are not the canonical orbitals satisfying the
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Koopmans’ theorem.26

In the SSR(2,2) method,7 the variational optimization of the KS orbitals and their FONs
is followed by solving a simple 2×2 secular problem(

EPPS
0 ∆SA

01
∆SA

01 EOSS
1

)(
a00 a01
a10 a11

)
=

(
E0 0
0 E1

)(
a00 a01
a10 a11

)
(SI-9)

to include possible coupling between the PPS and the OSS electronic configurations. In
Eq. (SI-9), EPPS

0 and EOSS
1 are the SA-REKS(2,2) energies and the interstate coupling ele-

ment ∆SA
01 is calculated using the SA-REKS(2,2) Lagrangian matrix element εSA

ab between
the active orbitals φa and φb as

∆SA
01 = (

√
na −

√
nb) εSA

ab (SI-10)

where na and nb are the FONs of the active orbitals.7,9,23

The analytical energy derivatives of the SSR individual states with respect to an exter-
nal perturbation λ (e.g., nuclear displacement)24 can be represented as

∂EX

∂λ
= tr DX hλ − 1

2
tr W̃X Sλ (SI-11a)

+ ∑
L

C̃X
L

∂′E2e
L

∂λ
−∑

L
CSA

L ∑
σ

tr XRσ
LTσ,λ(2e)

L , (SI-11b)

where X = 0, 1 labels the SSR state, DX is the relaxed density matrix of the state X, and
W̃X is the effective Lagrangian matrix in the basis of the eigenfunctions of Eq. (SI-4)

W̃X
pq = ∑

L
C̃X

L

(
pεL

pq +
qεL

pq

)
− 2

(
XQ(1)

pq + XQ(2)
pq

)
, (SI-12)

where the jεL
pq coefficients are given by

jεL
pq = ∑

σ

〈p|nσ
j,L F̂σ

L |q〉 . (SI-13)

In eq. (SI-11b), the terms E2e
L and Tσ,λ(2e)

L contain the derivatives of the two-electron in-
tegrals and of the exchange-correlation potential; their expressions can be found in Ref.
24. The modified ensemble weighting factors C̃X

L , the matrices XRσ
L, Q(1), and Q(2) in Eqs.

(SI-11b) and (SI-12) depend on the response vector Z obtained from solving the coupled-
perturbed (CP) REKS equations; see Ref. 24 for detail.

In the basis of the SA-REKS eigenfunctions, the relaxed density matrix DX is given by
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DX
qp = δqp ∑

L
C̃X

L (nα
p,L + nβ

p,L)− 2 ZX
qp ( f SA

p − f SA
q ) (SI-14a)

− 4 δqb δpa a0Xa1X(
√

na f SA
a −√nb f SA

b ) , (SI-14b)

where ZX
ij is the Z-vector obtained from solving the CP-REKS equations for the state X

(= 0, 1), akj are the elements of the eigenvectors of the SSR secular equation (SI-9), na

and nb are the FONs of the active orbitals in the PPS configuration, and f SA
j are the FONs

of the SA-REKS orbitals in the averaged state. The matrix DX is the proper one-electron
density matrix for the SSR individual state X, as it yields the first order properties, e.g.,
the dipole moment, by taking the trace of its product with the matrix of the respective
one-electron operator.27

The matrix W̃X in Eq. (SI-11a) gives the contribution of the derivative of the or-
bital orthonormality constraint to the total energy gradient, i.e., the Pulay term.28 Hence,
this matrix is the (effective) Lagrangian matrix for the individual state X. If the energy
derivative in Eq. (SI-11) was calculated for a single state (e.g., by setting wPPS = 1) ob-
tained self-consistently from solving the secular equation (SI-4), then the response vector
Z would vanish and the relaxed density matrix in Eq. (SI-11) would become identical to
the one-particle density matrix computed from the eigenfunctions of Eq. (SI-4) and the
Lagrangian in Eq. (SI-11) would become identical to the Lagrangian in Eq. (SI-4); this
would recover the usual analytic gradient of an energy obtained by variational optimiza-
tion with respect to the orbitals under the orthonormality constraint.28

The energies of the SSR orbitals are not explicitly defined. Hence, the ionization ener-
gies for an SSR state X cannot be obtained from the application of the Koopmans’ theo-
rem.26 However, the knowledge of the relaxed density matrix and the Lagrangian matrix
for the state X enables computation of the ionization energies and the respective Dyson’s
orbitals from the application of EKT.2,3 Using EKT, the ionization energies and Dyson’s
orbitals are obtained as the eigenvalues and the eigenfunctions of the Lagrangian ma-
trix converted to the natural orbitals representation,2,3 with the natural orbitals being the
eigenfunctions of the density matrix. This can be achieved by solving a generalized eigen-
problem29 for the Lagrangian matrix with the density matrix used as the metric on which
the eigenfunctions are normalized.30 For the SSR method, this eigenproblem reads

W̃X CX = DX CX εX , (SI-15)

where εX are the (negative) ionization energies for the individual state X and CX are the
respective Dyson’s orbitals. The (squares of the) norms of the eigenfunctions CX

||γ||2 = tr((CX)† DX (DX)† CX) . (SI-16)
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yield the pole strengths of the respective ionizations.30 The probability of the ionization
is proportional to the respective Dyson’s norm, when a transition of the ionized electron
occurs into an unstructured continuum of states.31

2 Details of the calculations

The EKT-SSR calculations reported in the main article were carried out using a locally
modified version of the GAMESS-US program.32 The calculations employ the 6-31G* ba-
sis set33 and the BH&HLYP density functional.34 When solving the SA-REKS SCF equa-
tions (SI-4), the value of the wPPS weighting factor was set to its default value of 0.5.6

The EKT-SSR ionization energies and Dyson’s orbitals were obtained at the geometries
taken from the non-adiabatic molecular dynamics (NAMD) trajectories reported in Ref.
35. In Ref. 35, the NAMD trajectories for the ring opening of 1,3-cyclohexadiene (CHD)
were obtained using the DISH-XF (decoherence induced surface hopping from the exact
factorization) trajectory surface hopping (TSH) approach36 in connection with the SSR-
ωPBEh method. The time step for the integration of the nuclear trajectories was set to
0.48 fs. In this work, every tenth snapshot from the nuclear trajectories was selected for
the EKT-SSR calculations; i.e., the time interval between the successive snapshots is 4.8 fs.
This time step is shorter that the time step used typically in the acquisition of the TRPES
spectra, e.g., 30 fs in Ref. 37.

The PES spectra reported in the main article were calculated using Eq. (1) of the main
article, where the ionization energies and the norms of the Dyson’s orbitals were calcu-
lated by Eq. (SI-15) at the geometries generated by sampling the Wigner function of a
canonical ensemble of harmonic oscillators at T = 300K.38,39 These geometries were ob-
tained previously in Ref. 35 using the geometries optimized for the ground electronic
states and the respective harmonic vibrational frequencies.

The TRPES spectrum of the photochemical ring opening of CHD was calculated using
Eq. (2) of the main article. The intensity of the TRPES signal was calculated on a 2D grid
with 400×120 points along the electron binding energy (eBE) ε and the propagation time
t dimensions and spanning the intervals [0,20] eV and [0,576] fs, respectively. The values
of the intensity on the 2D grid were used to plot the TRPES spectrum in the left panel of
Fig. 3 of the main article.

The 2D TRPES plot in the right panel of Fig. 3 of the main article was constructed
from the eBEs and the norms of the eight first Dyson’s orbitals calculated with the EKT-
SSR method for the pool of geometries selected from the NAMD trajectories. The eBEs
were put in a 2D array {t,IP(t)}, where t is the respective propagation time, and each
{t,IP(t)} pair in the array was weighted by the respective Dyson’s norm |γ(t)|2 using the
“WeightedData” function of Wolfram Mathematica40 package. The obtained weighted
data array was visualized using the “SmoothDensityHistogram” intrinsic function of
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Mathematica with bins of 0.07 eV × 4.8 fs to obtain the plot shown in the right panel
of Fig. 3 of the main article.

3 Fitting the TRPES intensities at eBE 5, 5.3, 8.5, and 10 eV

The theoretical intensities of the TRPES signal estimated by Eq. (2) of the main article
were fitted by the ex-Gaussian function for the eBEs of 5, 5.3, 8.5, and 10 eV; see Fig. SI-1.
These eBEs were selected for comparison with the experimental TRPES results reported
by Adachi et al..37 In Figs. 1 and 2 of Ref. 37, the experimental TRPES intensities at the
kinetic energies of photoelectrons of 8.6, 8.3, and 3.6 eV are reported. As the ionizing
radiation of 13.6 eV was used by Adachi et al.,37 these signals correspond to the eBEs of
5, 5.3, and 10 eV shown in Fig. SI-1. The signal at eBEs of 8.5 eV in Fig. SI-1 corresponds
to the first ionization band of the ground state CHD and cZc- and tZt-HT species. This
signal is reported in Fig. SI-1 for illustration of the conclusions of the main article.

The ex-Gaussian function was used in Refs. 37 and 42 to incorporate the instrument
response function in the fitting of the TRPES signal intensities. The ex-Gaussian function
exG

exG(x; A, B, τ, σ, µ) = A
1

σ
√

2π

∫ ∞

0
e−y/τ e−(x−y−µ)2/2σ2

dy + B (SI-17a)

=
A
2

e−1/τ(x−µ−σ2/2τ)
(
1 + Er f

[
x−µ−σ2/2τ/σ

√
2
])

+ B , (SI-17b)

where A and B are the amplitude and the background constant, respectively, τ is the ex-
ponential decay parameter, and σ and µ are the variance and the offset of the Gaussian
distribution function, respectively, is sufficiently flexible to describe the exponential rise
and fall or the exponential fall only of the target quantity. The exG function is used here
for consistency with the work of Adachi et al.,37 where the exponential decay of the TR-
PES intensities at several photoelectron kinetic energies was fitted with the inclusion of
the finite-time instrument response.

In the left panel of Fig. SI-1, the theoretical TRPES intensities at the eBEs of 5 and 5.3
eV are shown in the interval [0,250] fs; the same interval as in Ref. 37. The exponential
decay constants of 86±44 fs and 38±17 fs are comparable with the decay constants of
70±10 fs and 60±20 fs obtained by Adachi et al. 37 at these eBEs.

In the right panel of Fig. SI-1, the TRPES intensities at the eBEs of 8.5 and 10 eV are
shown. The former signal describes the rise of the first ionization band of CHD or cZc-
HT in the ground electronic state. The latter signal describes the time evolution of the
second ionization band of cZc-HT. As seen in Fig. 2 of the main article, at the eBE of 10
eV the difference between the intensities of the second PES band of CHD and cZc-HT
in the S0 state reaches substantial magnitude. The signal at this eBE (the photoelectron
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Figure SI-1: Theoretical TRPES signal intensities at the eBEs of 5.0, 5.3, 8.5, and 10 eV.
The former two signals correspond to photoelectrons with the 8.6 eV and 8.3 eV kinetic
energies reported in Fig. 1 of Ref. 37. The last signal (10 eV) corresponds to photoelectrons
with the 3.6 eV kinetic energy shown in Fig. 3a of Ref. 37. The calculated intensities are
fitted (gray solid lines) using the ex-Gaussian function; the exponential decay constants
are shown in the respective plots. For the signals with the eBEs of 5 and 5.3 eV, the same
intervals as in Ref. 37, i.e., [0,250] fs, were used, when fitting the TRPES intensities. The
margins of error were obtained by the bootstrap resampling of the fitting data.41

kinetic energy of 3.6 eV) was assigned in Ref. 37 to the recovery of the ground electronic
state of the photoreaction product. The exponential decay constants of 292±59 fs (8.5
eV) and 379±167 fs (10 eV) are generally consistent with the observed kinetics of the
product ground state recovery. As seen in Fig. 3a of Ref. 37, the recovery occurs on a
timescale close to ca. 400 fs. A similar estimate for the ring opening kinetics, i.e., the
product formation occurs at ca. 400–500 fs, was obtained by Iikubo et al. 42 using the
TRPES (29.5 eV probe) in connection with the two-photon excitation and by Kaneshima
et al. 43 using the time-resolved high-harmonic spectroscopy.
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