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1.  Trotter decomposition error in the quantum simulation of time evolution of the wave function 

under the S2 operator

In quantum chemical calculations on quantum computers, the Trotter–Suzuki formula[1] is frequently used 

to decompose the time evolution operators onto the sequences of elementary gate operations. Let us consider 

the time evolution operator  with the Hamiltonian given in eqn (S1). 𝑒𝑥𝑝⁡( ‒ 𝑖𝐻𝑡)

𝐻 =
𝑚

∑
𝑗 = 1

ℎ𝑗 (S1)

The time evolution operator in the first- and the second-order Trotter decomposition is given in eqn (S2) 

and (S3), respectively. 

𝑒 ‒ 𝑖𝐻𝑡 ≈ [𝑒
‒ 𝑖ℎ1𝑡 𝑁

× 𝑒
‒ 𝑖ℎ2𝑡 𝑁

× ⋯ × 𝑒
‒ 𝑖ℎ𝑚𝑡 𝑁]𝑁 (S2)

𝑒 ‒ 𝑖𝐻𝑡

≈ [(𝑒
‒ 𝑖ℎ1𝑡 2𝑁

× 𝑒
‒ 𝑖ℎ2𝑡 2𝑁

× ⋯ × 𝑒
‒ 𝑖ℎ𝑚 ‒ 1𝑡 2𝑁) × 𝑒

‒ 𝑖ℎ𝑚𝑡 𝑁
× (𝑒

‒ 𝑖ℎ𝑛 ‒ 1𝑡 2𝑁
× ⋯ × 𝑒

‒ 𝑖ℎ2𝑡 2𝑁
× 𝑒

‒ 𝑖ℎ1𝑡 2𝑁)]𝑁
(S3)

It is known that the Trotter decomposition error depends on the ordering of Hamiltonian terms. The Trotter 

decomposition error has been well studied in the unitary coupled cluster ansatz for the electronic structure 

calculations using the variational quantum eigensolver (VQE).[2–4] A lexicographic ordering can maximize 

the gate cancellations to reduce the computational costs,[2] but it is not the best strategy to minimize the 

Trotter decomposition error. A magnitude ordering gives the smaller Trotter decomposition error than the 

lexicographic ordering.[4] More error resilient ordering named as a depleteGroups strategy was also 

proposed.[4] However, finding the optimal ordering of Hamiltonian terms to minimize the Trotter 

decomposition error is generally a difficult task. 

In the time evolution of the wave function under the spin operator S2, the magnitude ordering cannot be 

used because the coefficients of the S2 terms are uniform for all molecular orbital indices: 

𝑆2

=
𝑀

∑
𝑝,𝑞

[1
4(𝑎 †

𝑝𝛼𝑎𝑝𝛼𝑎 †
𝑞𝛼𝑎𝑞𝛼 + 𝑎 †

𝑝𝛽𝑎𝑝𝛽𝑎 †
𝑞𝛽𝑎𝑞𝛽 ‒ 𝑎 †

𝑝𝛼𝑎𝑝𝛼𝑎 †
𝑞𝛽𝑎𝑞𝛽 ‒ 𝑎 †

𝑝𝛽𝑎𝑝𝛽𝑎 †
𝑞𝛼𝑎𝑞𝛼) +

1
2(𝑎 †

𝑝𝛼𝑎𝑝𝛽𝑎 †
𝑞𝛽𝑎𝑞𝛼 + 𝑎 †

𝑝𝛽𝑎𝑝𝛼𝑎 †
𝑞𝛼𝑎𝑞𝛽)](S4)

where M stands for the number of molecular orbitals,  and  for the creation and annihilation operators, 𝑎 †
𝑝𝜎 𝑎𝑝𝜎

respectively, of the p-th molecular orbital of spin- ( ). In the present work, we adopted the 𝜎 ∈ {𝛼,𝛽}

lexicographic ordering for the quantum simulations of time evolution under the S2 operator. 

To disclose the Trotter decomposition error, we executed numerical simulations of time evolutions under 

the S2 operator using six electrons in a twelve spin orbital model with randomly prepared initial states with 

MS = 0. The simulation program was developed by utilising OpenFermion[5] and Cirq[6] libraries. The initial 

states are prepared by the following steps: (1) Initialise the qubit state to |000···0⟩. (2) Apply Pauli-X (NOT) 

gates to qubits 1–6 to generate a closed shell singlet configuration. Here, the qubits are ordered as , , 𝜑1𝛼 𝜑1𝛽

, , ···, . (3) Apply SwapPowGate(i,a) defined in eqn (S5) with random rotation angles 𝜑2𝛼 𝜑2𝛽 𝜑6𝛽
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, with i ∈ occupied and a ∈ unoccupied orbitals, and i and a belong to the same spin symmetry ‒ 1 2 ≤ 𝜃 ≤ 1 2

(spin- or spin-) to preserve the number of spin- and spin- electrons. The obtained wave function is not 

an eigenfunction of the S2 operator, but is an eigenfunction of the Sz operator. The evolution time T is set to 

be 10 and changing the number of Trotter slices N in eqn (S2) and (S3) from 40 to 100. Five numerical 

simulations were executed for each Trotter slice number. 

𝑆𝑤𝑎𝑝𝑃𝑜𝑤𝐺𝑎𝑡𝑒 ≐ (1 0 0 0

0 cos
𝜋
2

𝜃 ‒ 𝑖sin
𝜋
2

𝜃 0

0 ‒ 𝑖sin
𝜋
2

𝜃 cos
𝜋
2

𝜃 0

0 0 0 1
) (S5)

The square overlap between the wave function obtained from the numerical simulation under the first order 

Trotter decomposition and the wave function under the exact time evolution without the Trotter 

decomposition, and the difference of the expectation values of the S2 operator calculated with and without 

the first order Trotter decompositions are depicted in Figures S1 and S2, respectively, and those of the second 

order Trotter decomposition are summarised in Figures S3 and S4. 

Clearly, the first order Trotter decomposition with the Jordan–Wigner transformation (JWT, plots in blue) 

exhibit very large Trotter decomposition errors. The deviations from the wave function under the exact time 

evolution become smaller for the larger Trotter slices N, but the error is still not negligible even for N = 100. 

The ⟨S2⟩ values of the wave functions under the first order Trotter decomposition oscillate periodically. The 

fluctuation of the ⟨S2⟩ value becomes smaller for the larger N, but the period of the oscillation does not 

change. We found that the period depends on the number of electrons and the MS values, as plotted in Figure 

S5. The mechanism of the oscillations of the ⟨S2⟩ value is unclear. We do not discuss this finding further 

because it is out of the scope of this paper. The Trotter decomposition error can be attenuated by adopting 

the second order Trotter decomposition, but the fluctuation of the ⟨S2⟩ value does not vanish completely for 

N = 60. 

In contrast with the JWT, the generalized spin coordinate mapping (GSCM)-based quantum circuit 

simulations (plotted in red) give the smaller Trotter decomposition error than those of the JWT. The square 

overlap with the wave function under the exact time evolution is very close to unity for N ≥ 60, and the ⟨S2⟩ 

value does not oscillate even in the first order Trotter decomposition. From these results we concluded that 

the GSCM with the second order Trotter decomposition is very reliable and suitable for the quantum 

simulations of time evolutions under the S2 operator from the viewpoint of the Trotter decomposition error. 
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Figure S1. Square overlap of the wave functions with the first order Trotter decomposition with different 

Trotter slices and that with the exact time evolution. Results using the Jordan–Wigner transformation (JWT) 

are plotted in blue, and those using generalized spin coordinate mapping (GSCM) are given in red. 

Figure S2. Difference of the expectation values of the S2 operator calculated with and without the first 

order Trotter decompositions, with different Trotter slices. Results using Jordan–Wigner transformation 

(JWT) are plotted in blue, and those using generalized spin coordinate mapping (GSCM) are given in red.
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Figure S3. Square overlap of the wave functions with the second order Trotter decomposition with 

different Trotter slices and that with the exact time evolution. Results using the Jordan–Wigner 

transformation (JWT) are plotted in blue, and those using generalized spin coordinate mapping (GSCM) are 

given in red.

Figure S4. Difference of the expectation values of the S2 operator calculated with and without the second 

order Trotter decompositions, with different Trotter slices. Results using the Jordan–Wigner transformation 

(JWT) are plotted in blue, and those using generalized spin coordinate mapping (GSCM) are given in red.
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Figure S5. Difference of the expectation values of the S2 operator calculated with and without the first 

order Trotter decomposition with Trotter slices N = 80, with the different number of electrons and the MS 

values. Results using the Jordan–Wigner transformation (JWT) are plotted in blue, and those using 

generalized spin coordinate mapping (GSCM) are given in red.
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2.  Preparation of spin-mixed wave functions on quantum computers. 

For the demonstration of the PSA, we generated the spin-mixed wave function which consists of spin-

singlet ( ) and spin-triplet ( ) components. Here,  and  are given in eqn (S6) and �|Ψ𝑆 = 0⟩ �|Ψ𝑆 = 1⟩ �|Ψ𝑆 = 0⟩ �|Ψ𝑆 = 1⟩
(S7), respectively. 

�|Ψ𝑆 = 0⟩ =
1
2

( �|2𝑢𝑑0⟩ ‒ �|2𝑑𝑢0⟩) (S6)

�|Ψ𝑆 = 1⟩ =
1
2

( �|2𝑢𝑑0⟩ + �|2𝑑𝑢0⟩) (S7)

The spin-mixed wave function can be written as in eqn (S8)
�|Ψ𝐶𝑜𝑛𝑡⟩ = 𝑐𝑆 = 0 �|Ψ𝑆 = 0⟩ + 𝑐𝑆 = 1 �|Ψ𝑆 = 1⟩
= 𝑐𝑢𝑑 �|2𝑢𝑑0⟩ + 𝑐𝑑𝑢 �|2𝑑𝑢0⟩ (S8)

To generate the quantum state corresponding to  given in eqn (S8), we constructed a quantum circuit �|Ψ𝐶𝑜𝑛𝑡⟩
depicted in Fig. 2a. The same Figure is also shown here as Figure S6. 

Figure S6. A quantum circuit for the preparation of .�|Ψ𝐶𝑜𝑛𝑡⟩ = 𝑐𝑢𝑑�|2𝑢𝑑0⟩ + 𝑐𝑑𝑢�|2𝑑𝑢0⟩

The quantum circuit depicted in Figure S6 can be divided into two steps: (1) preparation of the  �|2𝑢𝑑0⟩

state and (2) generation of a superposition of  and . In the step (1) we applied Pauli-X (NOT) �|2𝑢𝑑0⟩ �|2𝑑𝑢0⟩

gates on the qubits storing the occupancy of , ,  and  orbitals. The resultant quantum state is 𝜑1𝛼 𝜑1𝛽 𝜑2𝛼 𝜑3𝛽

, where qubits are ordered as . In the step (2) first we applied a  gate on �|11100100⟩ �|𝜑1𝛼𝜑1𝛽𝜑2𝛼⋯𝜑4𝛽⟩ 𝑅𝑦(𝜃)

the qubit corresponding to  orbital. This generate the quantum state in eqn (S9).𝜑3𝛼

𝑐𝑜𝑠
𝜃
2

�|11100100⟩ ‒ sin
𝜃
2

�|11101100⟩ (S9)

Then, we applied three CNOT gates conditioned on the qubit corresponding to  orbital. The final 𝜑3𝛼

quantum state is given in eqn (S10).
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𝑐𝑜𝑠
𝜃
2

�|11100100⟩ ‒ sin
𝜃
2

�|11011000⟩ (S10)

The quantum state in eqn (10) corresponds to the spin-contaminated wave function given in eqn (S11). 

�|Ψ𝐶𝑜𝑛𝑡⟩ = 𝑐𝑜𝑠
𝜃
2

�|2𝑢𝑑0⟩ ‒ sin
𝜃
2

�|2𝑑𝑢0⟩ (S11)

By comparing eqn (S8) and (S11) we can derive the following relationship. 

𝑐𝑢𝑑 = 𝑐𝑜𝑠
𝜃
2

,  𝑐𝑑𝑢 = sin
𝜃
2 (S12)

If we set  we obtain  and , which corresponds to the spin-singlet wave 𝜃 = ‒ 𝜋 2 𝑐𝑢𝑑 = 1 2 𝑐𝑑𝑢 = ‒ 1 2

function in eqn (S6), and in case of  we obtain , which is the spin-triplet wave 𝜃 = 𝜋 2 𝑐𝑢𝑑 = 𝑐𝑑𝑢 = 1 2

function in eqn (S7). By changing  from  to , we can obtain the spin-mixed wave functions. 𝜃 ‒ 𝜋 2 𝜋 2
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3.  Trotter slice number dependence of the probabilistic spin annihilation

Because the probabilistic spin annihilations (PSA) proposed in this work use the time evolution of the 

wave function under the S2 operator, Trotter decomposition error can affect the spin annihilation results. As 

discussed in the previous section, the GSCM-based wave function encoding in conjunction with the second 

order Trotter decomposition gives very small Trotter decomposition error for T = 10 and N ≥ 40, where T 

denotes the evolution time and N the number of Trotter slices. 

In the PSA, for spin-singlet (S = 0) and spin-doublet (S = 1/2) states the evolution time T is /2 and /3, 

respectively. In the main text, we described the PSA results with the second order Trotter decomposition with 

N = 2. This corresponds to N = 12.7 and 19.1 for S = 0 and 1/2, respectively, for T = 10 described in the 

previous section. We checked the Trotter slice number dependence on the quality of spin annihilated wave 

functions obtained from the PSA. 

The ⟨S2⟩ value of the spin annihilated wave function |Anni⟩ with different Trotter slice numbers for |Cont⟩ 

= |udud⟩ and |ududu⟩ are summarised in Figure S7 and S8, respectively. The ⟨S2⟩ value becomes closer to the 

theoretical value specified by the dotted horizontal line as the number of the Trotter slice increases. The spin 

annihilated wave functions |Anni⟩ for |Cont⟩ = |udud⟩ and |ududu⟩ with N = 5 are given in eqn (S13) and 

(S14), respectively. 

�|Ψ 𝑢𝑑𝑢𝑑
𝐴𝑛𝑛𝑖,𝑁 = 5⟩

= (0.5774 + 0.0055𝑖) �|𝑢𝑑𝑢𝑑⟩ + (0.5773 ‒ 0.0028𝑖) �|𝑑𝑢𝑑𝑢⟩ + ( ‒ 0.2886 ‒ 0.0027𝑖) �|𝑢𝑢𝑑𝑑⟩ +
( ‒ 0.2887 + 0.0055𝑖) �|𝑑𝑑𝑢𝑢⟩ + ( ‒ 0.2887 ‒ 0.0028𝑖) �|𝑢𝑑𝑑𝑢⟩ + ( ‒ 0.2887 ‒ 0.0028𝑖)
�|𝑑𝑢𝑢𝑑⟩

(S13)

�|Ψ 𝑢𝑑𝑢𝑑𝑢
𝐴𝑛𝑛𝑖,𝑁 = 5⟩

= (0.7246 ‒ 0.0578𝑖) �|𝑢𝑑𝑢𝑑𝑢⟩ + (0.2645 ‒ 0.0611𝑖) �|𝑢𝑢𝑑𝑢𝑑⟩ + (0.2645 ‒ 0.0611𝑖) �|𝑑𝑢𝑢𝑢𝑑⟩
+ (0.2645 ‒ 0.0611𝑖) �|𝑑𝑢𝑑𝑢𝑢⟩ + ( ‒ 0.1955 ‒ 0.0594𝑖) �|𝑢𝑢𝑢𝑑𝑑⟩ + ( ‒ 0.1955 ‒ 0.0594𝑖)

�|𝑢𝑢𝑑𝑑𝑢⟩ + ( ‒ 0.1955 ‒ 0.0594𝑖) �|𝑢𝑑𝑢𝑢𝑑⟩ + ( ‒ 0.1955 ‒ 0.0594𝑖) �|𝑢𝑑𝑑𝑢𝑢⟩
+ ( ‒ 0.1955 ‒ 0.0594𝑖) �|𝑑𝑢𝑢𝑑𝑢⟩ + ( ‒ 0.1955 ‒ 0.0594𝑖) �|𝑑𝑑𝑢𝑢𝑢⟩

(S14)

The spin annihilated wave function |Anni⟩ for |Cont⟩ = |udud⟩ with Trotter slice N = 2 is given in eqn 

(S15). 

�|Ψ 𝑢𝑑𝑢𝑑
𝐴𝑛𝑛𝑖,𝑁 = 2⟩

= (0.5778 + 0.0324𝑖) �|𝑢𝑑𝑢𝑑⟩ + (0.5751 ‒ 0.0163𝑖) �|𝑑𝑢𝑑𝑢⟩ + ( ‒ 0.2876 ‒ 0.0141𝑖) �|𝑢𝑢𝑑𝑑⟩ +
( ‒ 0.2888 + 0.0322𝑖) �|𝑑𝑑𝑢𝑢⟩ + ( ‒ 0.2882 ‒ 0.0170𝑖) �|𝑢𝑑𝑑𝑢⟩ + ( ‒ 0.2882 ‒ 0.0172𝑖)
�|𝑑𝑢𝑢𝑑⟩

(S15)

By comparing eqn (S13) and (S15), the increase of Trotter slice results in the reduction of the imaginary 

part of coefficients, and |Anni⟩ with N = 5 is closer to the spin eigenfunction for S = 0 given in eqn (17) in 

the main text. 
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Figure S7. Trotter slice number dependence on the ⟨S2⟩ value of the spin annihilated wave function starting 

from |Cont⟩ = |udud⟩. The dotted line specifies the theoretical value in the absence of the Trotter 

decomposition error. 

Figure S8. Trotter slice number dependence on the ⟨S2⟩ value of the spin annihilated wave function starting 

from |Cont⟩ = |ududu⟩. The dotted line specifies the theoretical value in the absence of the Trotter 

decomposition error.
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