Physical Chemistry Chemical Physics

Electronic Supplementary Information

Disorder-order and order-order phase transformations in Ta₅C₄ phases predicted by evolutionary algorithm and symmetry analysis

M. G. Kostenko^a, A. I. Gusev^{*a} and A. V. Lukoyanov^{b,c}

^a Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Pervomaiskaya 91, Ekaterinburg 620990, Russia.

^b Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108 Russia

^c Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira 19, Ekaterinburg, 620002, Russia.

E-mail: gusev@ihim.uran.ru

Mechanical stability and elastic constants of Ta₅C₄ phases

The elastic constants c_{ii} which are directly related to the mechanical stability of Ta₅C₄ phases were calculated by VASP package [1]. The calculated elastic constants c_{ii} (Table S1) were used to estimate the mechanical stability of the ordered Ta₅C₄ phases.

Mechanical stability of the predicted vacancy-ordered Ta₅C₄ phases was determined by the Born criteria [2, 3] which are represented below as equations (S1)-(S12).

For the mechanical stability of the orthorhombic Ta_5C_4 (space group *Immm*) phase, the following equations must be satisfied:

$c_{ii} > 0 \ (i = 1-6) \ ,$	(S1)	
$c_{11} + c_{22} > 2c_{12} ,$	(S2)	
$c_{22} + c_{33} > 2c_{23} ,$	(S3)	
$c_{11} + c_{33} > 2c_{13}$,	(S4)	
$c_{11} + c_{22} + c_{33} > 2(c_{12} + c_{13} + c_{23})$.	(S5)	

For the mechanical stability of the tetragonal Ta_5C_4 (space group I4/m) phase, the elastic constants should be satisfied to equation (S1) and also following equations:

$c_{11} > c_{12} $,	(S6)
$c_{44} > 0$,	(S7)
$(c_{11}+c_{12})c_{33}>2c_{13}^2.$	(S8)

The monoclinic Ta₅C₄ (space group C2/m) phase is mechanically stable, if its elastic constants are satisfied to equations (S1), (S3), (S5) and also following equations:

$$c_{33}c_{55} > c_{35}^2$$
, (S9)

$$c_{44}c_{66} > c_{46}^2, \tag{S10}$$

$$c_{22}c_{33}c_{55} + 2c_{23}c_{25}c_{35} > c_{22}c_{35}^2 + c_{55}c_{23}^2 + c_{33}c_{25}^2 , \qquad (S11)$$

$$2[c_{15}c_{25}(c_{33}c_{12} - c_{13}c_{23}) + c_{15}c_{35}(c_{22}c_{13} - c_{12}c_{23}) + c_{25}c_{35}(c_{11}c_{23} - c_{12}c_{13})] > c_{15}^{2}(c_{22}c_{33} - c_{23}^{2}) + c_{25}^{2}(c_{11}c_{33} - c_{13}^{2}) + c_{35}^{2}(c_{11}c_{22} - c_{12}^{2}) + pc_{55},$$
(S12)

where $p = c_{11}c_{22}c_{33} - c_{11}c_{23}^2 - c_{22}c_{13}^2 - c_{33}c_{12}^2 + 2c_{12}c_{13}c_{23}$.

The relationships between the elastic constants at which the triclinic phases have mechanical stability are given in monographs [1, 2]. These relations are rather cumbersome and therefore are not presented here.

According to calculation performed, all ordered Ta_5C_4 phases are mechanically stable.

SI Table

Elastic constants	Symmetry and space group			
C _{ij}	orthorhombic Immm	tetragonal I4/m	monoclinic C2/m	triclinic $P\overline{1}$
c_{11}	540.0	548.0	466.5	470.8
C ₁₂	99.2	172.5	175.0	192.3
C ₁₃	227.8	103.8	182.5	160.9
C ₁₄	0	-34.2	0	25.9
C ₁₅	0	34.2	0	-8.3
C ₁₆	0	0	0.8	-17.8
C ₂₂	611.4	548.0	538.5	521.4
C ₂₃	133.9	0	136.9	148.9
C ₂₄	0	0	0	-24.8
C ₂₅	0	0	0	21.9
C ₂₆	0	0	-5.45	-16.9
C ₃₃	500.6	606.2	563.4	494.5
C ₃₄	0	0	0	-17.0
C ₃₅	0	0	0	-11.8
C ₃₆	0	0	49.2	31.0
C ₄₄	139.5	180.7	227.7	178.5
C45	0	0	-28.6	-18.0
C ₄₆	0	0	0	-19.0
C55	141.8	143.4	165.7	162.6
C56	0	0	0	-6.0
C ₆₆	203.6	143.4	132.8	174.2

Table S1. Calculated elastic constants c_{ij} (GPa) for predicted vacancy-ordered Ta₅C₄ phases

Reference

- 1 G. Kresse and J. Furthmüller, *Phys. Rev. B* 1996, **54**, 11169-11186.
- 2 Thermodynamics of Crystals, ed. D. C. Wallace, Wiley, New York, 1972. 484 pp.
- 3 M. Born and K. Huang, *Dynamical Theory of Crystal Lattices*, Oxford Univ. press, 1998. 432 pp.