Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Can one use the electronic absorption spectra of metalloporphyrins to benchmark electronic structure methods? A case study on the cobalt porphyrin

Jhonathan Rosa de Souza¹, Matheus Morato F. de Moraes², Yuri Alexandre Aoto^{*2},

Paula Homem-de-Mello*1

¹ Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP, Brazil, 09210-580

² Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP, Brazil, 09210-580

*Correspondence to Yuri Alexandre Aoto (E-mail: <u>yuri.aoto@ufabc.edu.br</u>); Paula Homem-de-Mello (E-mail: <u>paula.mello@ufabc.edu.br</u>)

SUPPLEMENTARY INFORMATION

1. Reference data

Figure SI1. Molecular structure of the derivatives used as comparison.

Molecule	Solvent	T (°C)	Q(0-0) (nm)	Q(1-0) (nm)	ε (cm ⁻¹ M ⁻¹)	Ref.
H ₂ P	Vapor	393	627.5 (x)	575.0 (x)	-	а
	Vapor	393	511.5 (y)	483.5 (y)	-	
	Benzene	25	617.3 (x)	564.0 (x)	-	
	Benzene	25	520.8 (y)	490.3 (y)	-	
	Ethanol	-180	613.4 (x)	560.6 (x)	-	
	Ethanol	-180	519.0 (y)	487.5 (y)	-	
	Dichloro-Methane	25	613.5 (x)	560.0 (x)	-	
	Dichloro-Methane	25	518.0 (y)	488.0 (y)	-	
H ₂ TPP	Vapor	448	664.0 (x)	602.5 (x)	-	b
	Vapor	448	546.0 (y)	510.5 (y)	-	
	Benzene	25	650.0 (x)	590.5 (x)	-	
	Benzene	25	548.0 (y)	512.0 (y)	-	
	Oil	304	658.0 (x)	600.0 (x)	-	
	Oil	304	552.5 (y)	517.0 (y)	-	
	Oil	30	649.5 (x)	591.0 (x)	-	
	Oil	30	548.5 (y)	514.5 (y)	-	
	DMOE	25	646.5 (x)	590.0 (x)	-	
	DMOE	25	545.5 (y)	512.0 (y)	-	
	Dichloro-Methane	25	646.5 (x)	590.0 (x)	-	
	Dichloro-Methane	25	548.5 (y)	514.0 (y)	-	
H ₂ TPP	Dichloro-Methane	-	620	585	-	f
	Dichloro-Methane		538	514	_	

Table SI1. Experimental spectrophotometry data for Q-band of H₂P, H₂TPP, CoTPP and CoTPyP

Table SI1: continuation

Molecule	Solvent	т (°С)	Q(0-0) (nm)	Q(1-0) (nm)	ε (cm ⁻¹ M ⁻¹)	Ref.
СоТРР	Vapor	469	-	533	-	а
	Benzene	25	-	530	-	
	Dichloro-Methane	25	-	528	-	
СоТРР	Benzene	45	5	29	0.000170	b
	Toluene	45	5	29	0.000180	
	Dichloro-Methane	23	5	528		С
СоТРР	Pyridine	-	5	33	0.000100	d
	PhCN	-	5	31	0.000150	
	Dichloro-Methane	-	5	28	0.000130	
CoTPP	PhCN	22	5	530		е
СоТРР	Dichloro-Methane	-	528		-	f
СоТРуР	Chloroform/Methanol	-	563 [#]	531*	-	g
	Chloroform/Methanol	-	553 [#]	522#	-	

a Edwards *et. al, J. Mol. Spec.* **38** (1971) 16; <u>https://doi.org/10.1016/0022-2852(71)90090-7</u>

b Mu *et. al, Electroanalysis* **1** (1989) 113; <u>https://doi.org/10.1002/elan.1140010205</u>

c Kadish et. al, Inorg. Chem. 27 (1987) 4161; https://doi.org/10.1021/ic00272a006

d Ke et. al, Inorg. Chem. 57 (2018) 1490; https://doi.org/10.1021/acs.inorgchem.7b02856

e D'Souza et. al, Inorg. Chem. 32 (1993) 4042; <u>https://doi.org/10.1021/ic00071a012</u>

f Pamin et. al, ChemSusChem 12 (2018) 684; https://doi.org/10.1002/cssc.201802198

g Lopes et. al, Spectrochim. Acta A Mol. Biomol. Spectrosc. 215 (2019) 327; https://doi.org/10.1016/j.saa.2019.02.024

* Maximum absorption Q-band peak

[#] Values obtained by deconvolution method using Voigt functions

Molecules	Solvent	T (°C)	B (nm)	ε (cm⁻¹M⁻¹)	Ref.
H ₂ P	Vapor	322	372.5	-	а
	Benzene	25	396.5	-	
	Ethanol	-180	390.6	-	
	Dichloro-Methane	25	393.5	-	
H ₂ TPP	Vapor	395	402.5	-	b
	Benzene	25	418.5	-	
	Oil	294	419.0	-	
	Oil	32	418.0	-	
	DMOE	25	415.0	-	
	Dichloro-Methane	25	416.0	-	
H₂TPP	Dichloro-Methane	-	417.0	-	f
Cottp	Vapor	393	398.5	-	а
	Benzene	25	414.6	-	
	Dichloro-Methane	25	404.0	-	
CoTTP	Benzene	45	412.0	0.002900	b
	Toluene	45	412.0	0.002600	
	Dichloro-Methane	23	410.0	0.002900	с
CoTPP	Pyridine	-	409.0	0.001800	d
	PhCN	-	417.0	0.002360	
	Dichloro-Methane	-	411.0	0.002100	
СоТРР	PhCN	22	416.8	0.001785	е
CoTPP	Dichloro-Methane	-	410.0	-	f
СоТРуР	Chloroform/Methanol	-	411.0	-	g

Table SI2. Experimental spectrophotometry data for B-band (Soret band) of H_2P , H_2TPP , CoTPP and CoTPyP

a Edwards *et. al,* J Mol Spec. **38** (1971) 16; <u>https://doi.org/10.1016/0022-2852(71)90090-7</u> *b* Mu *et. al, Electroanalysis* **1** (1989) 113; <u>https://doi.org/10.1002/elan.1140010205</u> *c* Kadish *et. al, Inorg. Chem.* **27** (1987) 4161; <u>https://doi.org/10.1021/ic00272a006</u> d Ke et. al, Inorg. Chem. **57** (2018) 1490; <u>https://doi.org/10.1021/acs.inorgchem.7b02856</u> e D'Souza et. al, Inorg. Chem. **32** (1993) 4042; <u>https://doi.org/10.1021/ic00071a012</u> f Pamin et. al, ChemSusChem **12** (2018) 684; <u>https://doi.org/10.1002/cssc.201802198</u> g Lopes et. al, Spectrochim. Acta A Mol. Biomol. Spectrosc. **215** (2019) 327; <u>https://doi.org/10.1016/j.saa.2019.02.024</u>

2. Ground state geometries and properties

CoP optimized geometries, both at doublet and quartet state, are shown in Figure SI2. The obtained structures correspond to minima on potential energy surfaces since frequencies obtained are all real. The geometries at both states are planar, and the Co-N distances and the macrocycle in high-spin are slightly larger than in low-spin state.

Figure SI2. Optimized Geometries of (a) doublet and (b) quartet states using TPSSh/D3BJ/def2-TZVP

Doub	olet state			Quar	tet state		
с	1.091375	2.814753	0.000000	С	1.095491	2.851741	0.000000
С	-1.091375	2.814753	0.000000	С	-1.104278	2.858510	0.000000
С	0.678003	4.189989	0.000000	С	0.678737	4.230751	0.000000
С	-2.814753	1.091375	0.000000	С	-2.858510	1.104280	0.000000
Ν	-1.975350	0.000000	0.000000	Ν	-2.035742	0.005872	0.000000
С	-2.814753	-1.091374	0.000000	С	-2.851742	-1.095492	0.000000
С	-4.189989	0.678003	0.000000	С	-4.234736	0.682023	0.000000
С	-1.091374	-2.814753	0.000000	С	-1.095491	-2.851742	0.000000
С	1.091375	-2.814753	0.000000	С	1.104279	-2.858511	0.000000
С	-0.678003	-4.189989	0.000000	С	-0.678737	-4.230751	0.000000
С	0.678003	-4.189989	0.000000	С	0.682023	-4.234736	0.000000
С	2.814753	-1.091375	0.000000	С	2.858510	-1.104279	0.000000
С	2.814753	1.091374	0.000000	С	2.851741	1.095491	0.000000
С	4.189989	0.678002	0.000000	С	4.230751	0.678737	0.000000
С	4.189989	-0.678003	0.000000	С	4.234735	-0.682023	0.000000
С	-4.189989	-0.678003	0.000000	С	-4.230751	-0.678737	0.000000
С	-0.678003	4.189989	0.000000	С	-0.682023	4.234736	0.000000
Ν	1.975350	-0.000000	0.000000	Ν	2.035742	-0.005871	0.000000
Ν	0.000000	-1.975350	0.000000	Ν	0.005871	-2.035742	0.000000
Ν	-0.000000	1.975350	0.000000	Ν	-0.005871	2.035742	0.000000
н	-1.355418	-5.031172	0.000000	Н	-1.348399	-5.078554	0.000000
н	1.355418	-5.031172	0.000000	н	1.347172	-5.085954	0.000000
н	-5.031171	-1.355418	0.000000	н	-5.078554	-1.348399	0.000000
Н	-5.031172	1.355418	0.000000	Н	-5.085954	1.347172	0.000000
Н	-1.355418	5.031172	0.000000	Н	-1.347172	5.085954	0.000000
Н	1.355418	5.031172	0.000000	Н	1.348400	5.078553	0.000000
Н	5.031172	1.355418	0.000000	Н	5.078553	1.348400	0.000000
Н	5.031172	-1.355418	0.000000	Н	5.085954	-1.347172	0.000000
C	-2.408724	2.408724	0.000000	C	-2.425134	2.425135	0.000000
Н	-3.174560	3.174560	0.000000	Н	-3.191575	3.191577	0.000000
C	2.408/24	2.408724	0.000000	C	2.415980	2.415980	0.000000
Н	3.174559	3.174559	0.000000	Н	3.182443	3.182444	0.000000
C	2.408724	-2.408724	0.000000	C	2.425135	-2.425135	0.000000
Н	3.1/4560	-3.1/4560	0.000000	Н	3.191576	-3.191575	0.000000
C	-2.408/24	-2.408/24	0.000000		-2.415981	-2.415981	0.000000
Н	-3.1/4559	-3.1/4559	0.000000	Н	-3.182443	-3.182445	0.000000
Co	0.000000	0.000000	0.000000	Со	0.000000	0.000000	0.000000

Table SI3. Cartesian coordinates, in Angstrom, of optimized Geometries of (a) doublet and (b) quartet states using TPSSh/D3BJ/def2-TZVP

Table SI4. Cobalt(II) to nitrogen	average bond length for	different porphyrinic systems
-----------------------------------	-------------------------	-------------------------------

СоР					Сотрр				CoOEP
² Ag *	⁴ B _{1g} *	Ref. a	Ref. b	Ref. c	Ref. a	Ref. b	Ref. c	Ref. d	Ref. e
1.9753	2.0357	1.99	1.985	1.98	1.99	1.981	1.967	1.949	1.971

* This work, obtained with TPSSh/D3BJ/def2-TZVP

a B3LYP/LANL2DZ, from Roy et. al, Spectrochim. Acta A Mol. Biomol. Spectrosc. **190** (2018) 121; https://doi.org/10.1016/j.saa.2017.08.069

b PW/DNP, from Liu et. al, J. Chem. Phys., 139 (2013) 204306; https://doi.org/10.1063/1.4832696

c VWN-B-P/triple-ζ STO, from Liao and Scheiner J. Chem. Phys. **117** (2002) 205; <u>https://doi.org/10.1063/1.1480872</u>

d X-ray diffraction crystals, from Madura and Scheidt Inorg. Chem. 15 (1976) 3182; https://doi.org/10.1021/ic50166a056

e X-ray diffraction crystals, from Scheidt and Turowska-Tyrk *Inorg. Chem.* **33** (1994) 1314; <u>https://doi.org/10.1021/ic00085a017</u>

Table SI5. Mulliken and electrostatic surface potential derived (ChelpG) charges obtained for Co(II) in doublet (A_g) and quartet (B_{1g}) states by DFT methods

State	BP86	OLYP	M06L	TPSSh	B3LYP	PBE0	M06	CAM- B3LYP	ωΒ97Χ
Mulliken									
² Ag	-0.070	-0.238	0.265	0.108	0.072	0.067	-0.007	0.138	0.138
⁴ B _{1g}	-0.026	-0.172	0.304	0.168	0.109	0.111	-0.014	0.166	0.165
				Che	elpG				
² A _g	0.346	0.399	0.418	0.411	0.403	0.446	0.371	0.432	0.462
⁴ B _{1g}	0.151	0.222	0.546	0.482	0.444	0.514	0.602	0.660	0.497

	BP86	OLYP	M06L	TPSSh	B3LYP	PBEO	M06	CAM- B3LYP	wB97X
$\langle S^{2} \rangle$	0.7614	0.7684	0.7673	0.7581	0.7564	0.7568	0.7606	0.7548	0.7546
Deviation (%)	1.52	2.46	2.31	1.07	0.86	0.91	1.42	0.64	0.61

Table SI6. Spin contamination obtained with different functionals (ideal value: $(S^2) = 0.75$)

3. Electronic absorption spectrum

Table SI7. Expected peaks in the UV-Vis region for CoTPP and CoP molecules in gas-phase

	СоТРР	СоР
Q(0-0) band	2.08 - 2.25 eV ^(b)	2.21 - 2.41 eV ^(b)
Q(1-0) band	2.23 - 2.43 eV ^(a)	2.38 - 2.61 eV ^(b)
B band	3.01 - 3.22 eV ^(a)	3.16 - 3.40 eV ^(b)
M band	6.20 eV (CoTTP and FBTPP) ^(a)	5.51 eV (free base) ^(a)
unnamed band 2	4.72 eV ^(a)	
unnamed band 1	1.61 eV ^(a)	

(a) experimental data from Edwards *et. al, J. Mol. Spec.* **38** (1971) 16; <u>https://doi.org/10.1016/0022-2852(71)90090-7</u> and (b) estimated, see main text.

Table SI8 summarizes some literature assignment of the bands found in the UV-Vis spectrum of the free base porphyrin, obtained by several authors and methods. For a comparison of excitation energies see Table 2 of Angeli *et. Al* (<u>https://doi.org/10.1007/s00214-006-0207-0</u>). Whenever the excitations that contribute to the "x" and "y" bands are equivalent (e.g., Q and B bands), the contributions of each excitation are a rough average of x and y components, indicated by a "~". Since CoP is of point group C_{4h}, it is not important for us to distinguish between them. However, for some cases (e.g, N band of Serrano-Andrés *et. Al*, <u>https://doi.org/10.1016/S0009-2614(98)00934-8</u>) the assignment suggested by the authors does not consider x and y equivalently. For these cases two sets of contributions are given.

We adopted the notation of Parusel and Grimme for frontier orbitals. For orbitals where the transition originates (thus, occupied orbitals, in the left-hand side of " \rightarrow " in the table below):

- b_{1u} is the HOMO of that symmetry;
- *n*b_{1u} is the HOMO-1 of that symmetry;
- 2*n*b_{1u} is the HOMO-2 of that symmetry; and so on.

The final orbitals of the transition (thus, the unoccupied orbitals, in the right-hand side of " \rightarrow ") are always the Gouterman's LUMO orbitals (b_{2g}, b_{3g}).

Table SI8. Bands classification for a free-base porphyrin absorption spectrum as presented by Goutterman and selected wave function calculations

	Gouterman (1960s) 4-orbital model ^a	Tokita et al. ^b SAC-CI	Serrano-Andrés et al. ^c CASSCF (16,14) ANO-S C,N [3s2p1d]/H[2s] Orbitals in the active space: 4-6 b _{1u} 3-5 b _{2g} 2-5 b _{3g} 1-3a _u	Parusel and Grimme ^d MRCI and TDDFT	Angeli et al. ^e CASSCF (14,13) 6-31G* Orbitals in the active space: 3-5 b _{1u} 3-6 b _{2g} 3-6 b _{3g} 1-2 a _u State average: 4B _{3u} + 4B _{2u}
Q bands (Q _x and Q _y)	L bands Described as Q _x and arising from a Q _y) configuration interaction	$\begin{array}{l} {\bf 1^1B_{2u} \ and \ 1^1B_{3u}}:\\ b_{1u} \to b_{\{3,2\}g}\\ (\sim 50\%)\\ a_u \to b_{\{3,2\}g} \ (\sim 40\%) \end{array}$	$\begin{array}{l} {\bf 1^1B_{2u} \ and \ 1^1B_{3u}}:\\ b_{1u} \to b_{\{3,2\}g}\\ (\sim 40\%)\\ a_u \to b_{\{3,2\}g} \ (\sim 35\%) \end{array}$	1¹B_{2u} and 1¹B_{3u}: $b_{1u} \rightarrow b_{\{3,2\}g}$ (~50%) $a_u \rightarrow b_{\{3,2\}g}$ (~35%)	1¹B_{2u} and 1¹B_{3u}: $b_{1u} \rightarrow b_{\{3,2\}g}$ (~43%) $a_u \rightarrow b_{\{3,2\}g}$ (~47%)
B band (Soret band)	"Gouterman's orbitals": b_{1u} , a_u , b_{2g} and b_{3g} . It is essentially a CAS(4,4). See Angeli, Pastore, Cimiraglia (2007) for such a calculation	2¹B_{3u}: $a_u \rightarrow b_{3g} (42\%)$ $nb_{1u} \rightarrow b_{2g} (26\%)$ $b_{1u} \rightarrow b_{2g} (20\%)$	$\begin{array}{l} \textbf{2^{1}B_{2u} and 2^{1}B_{3u}:} \\ a_{u} \rightarrow b_{\{2,3\}g} \ (\sim 30\%) \\ nb_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 20\%) \\ b_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 15\%) \end{array}$	$\begin{array}{l} \textbf{2^{1}B_{2u} and 2^{1}B_{3u}:} \\ a_{u} \rightarrow b_{\{2,3\}g} \ (\sim 30\%) \\ nb_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 27\%) \\ b_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 15\%) \end{array}$	2 ¹ B _{3u} : $a_u \rightarrow b_{3g} (35\%)$ $b_{1u} \rightarrow b_{2g} (25\%)$ $nb_{1u} \rightarrow b_{2g} (22\%)$ 2 ¹ B _{2u} : $b_{1u} \rightarrow b_{3g} (43\%)$ $a_u \rightarrow b_{3g} (37\%)$

Table SI8. Continuation

	Gouterman (1960s) 4-orbital model ^a	Tokita et al. ^b SAC-CI	Serrano-Andrés et al. ^c CASSCF (16,14) ANO-S C,N [3s2p1d]/H[2s] Orbitals in the active space: 4-6 b _{1u} 3-5 b _{2g} 2-5 b _{3g} 1-3a _u	Parusel and Grimme ^d MRCI and TDDFT	Angeli et al. ^e CASSCF (14,13) 6-31G* Orbitals in the active space: 3-5 b _{1u} 3-6 b _{2g} 3-6 b _{3g} 1-2 a _u State average: 4B _{3u} + 4B _{2u}
Ν	Not described by the model	2¹B_{2u}: $b_{1u} \rightarrow b_{3g} (41\%)$ $a_u \rightarrow b_{2g} (39\%)$ $nb_{1u} \rightarrow b_{3g} (8\%)$	$\begin{aligned} \mathbf{3^{1}B_{3u}}: \\ nb_{1u} \to b_{2g} (27\%) \\ b_{1u} \to b_{2g} (13\%) \\ a_{u} \to b_{3g} (9\%) \\ a_{u}b_{3g} \to b_{2g}b_{2g} (5\%) \\ \\ \mathbf{3^{1}B_{2u}}: \\ b_{1u} \to b_{3g} (32\%) \\ nb_{1u} \to b_{3g} (15\%) \\ a_{u} \to b_{2g} (7\%) \end{aligned}$	$\begin{array}{l} \mathbf{3^{1}B_{2u} \ and \ \mathbf{3^{1}B_{3u}}:} \\ nb_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 37\%) \\ b_{1u} \rightarrow b_{\{3,2\}g} \\ (\sim 15\%) \\ a_{u} \rightarrow b_{\{3,2\}g} \ (\sim 15\%) \end{array}$	$\begin{aligned} \mathbf{3^{1}B_{3u}}: \\ b_{1u} \to b_{2g} (37\%) \\ nb_{1u} \to b_{2g} (34\%) \\ a_{u} \to b_{3g} (9\%) \\ \\ \mathbf{3^{1}B_{2u}}: \\ nb_{1u} \to b_{3g} (56\%) \\ 2nb_{1u} \to b_{3g} \\ (20\%) \end{aligned}$
L	Not described by the model	3¹B_{3u}: $nb_{1u} \rightarrow b_{2g} (58\%)$ $a_u \rightarrow b_{3g} (16\%)$ $b_{1u} \rightarrow b_{2g} (10\%)$ 3¹B_{2u}: $b_{1u} \rightarrow b_{3g} (79\%)$	$4^{1}B_{3u}:$ 2nb _{1u} → b _{2g} (55%) a _u nb _{2g} → b _{2g} b _{3g} (10%) $4^{1}B_{2u}:$ b _{1u} → b _{3g} (51%) nb _{1u} → b _{3g} (6%) a _u b _{2g} → b _{3g} b _{3g} (7%)	4¹B_{2u} and 4¹B_{3u} : 2nb _{1u} → b _{{3,2}g} (~62%) 5¹B_{3u} : b _{3g} → a _u (37%) b _{1u} b _{2g} → b _{3g} b _{2g} (26%)	$ \begin{array}{l} 4^{1}B_{3u}: \\ 2nb_{1u} \rightarrow b_{2g} \\ (87\%) \\ \\ 4^{1}B_{2u}: \\ nb_{1u} \rightarrow b_{3g} (66\%) \\ b_{1u} \rightarrow b_{3g} (14\%) \end{array} $
М	Not described by the model	$4^{1}B_{2u}$ and $4^{1}B_{3u}$: $2nb_{1u} \rightarrow b_{\{3,2\}g}$ (~81%)		$7^{1}B_{3u}$: $a_{u}b_{3g} \rightarrow b_{2g} (19\%)$ $b_{1u}b_{3g} \rightarrow b_{3g}b_{2g}$ (12%)	

a Gouterman et. al, J. Mol. Spectrosc. **11** (1963); https://doi.org/10.1016/0022-2852(63)90011-0 b Tokita et. al, J. Phys. Chem. A **102** (1998) 1843; https://doi.org/10.1021/jp9731361 c Serrano-Andrés et. al, Chem. Phys. Lett. **295** (1998) 195; https://doi.org/10.1021/jp9731361 c Serrano-Andrés et. al, Chem. Phys. Lett. **295** (1998) 195; https://doi.org/10.1016/S0009-2614(98)00934-8 d Parusel and Grimme, J. Porphyr. Phthalocya. **5** (2001) 225; https://doi.org/10.1002/jpp.310 e Angeli et. al, Theor. Chem. Acc. **117** (2007) 743; https://doi.org/10.1007/s00214-006-0207-0 **Table SI9.** TD-DFT results obtained for the Q-band of CoP. Transition energy (ΔE , in eV, in cm⁻¹ and the respective wavelength, λ , in nm), oscillator strength (*f*) and configurations calculated with different functionals and def2-TZVP basis set

	States	Configuration	Weight		ΔE		
wiethod	States	Configuration	weight	eV	cm ⁻¹	nm	f (10⁴)
	1-B _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.436	2.062		600.9	0.002
DDQC	1-B _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.436	2.063	10040.9		0.002
врао	2-B _{2u}	2-a _u → 5-b _{2g}	0.439	2 1 2 2	17200 0	F01 4	0.400
	2-B _{3u}	2-a _u → 5-b _{3g}	0.439	2.133	17200.9	581.4	0.490
OLYP	1-B _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.428	2 0 7 2	16712.2	598.3	0.000
	1-B _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.428	2.072	10/15.2		
	2-B _{2u}	2-a _u → 5-b _{2g}	0.431	2 1 2 5	17219.2	580.7	1.159
	2-B _{3u}	2-a _u → 5-b _{3g}	0.431	2.135			
	1-B _{2u}	2-a _u → 5-b _{2g}	0.330	2 1 1 7	17071.6	585.8	0.440
	1-B _{3u}	2-a _u → 5-b _{3g}	0.330	2.117			
WIDO-L	2-B _{2u}	7-b _{1u} → 5-b _{3g}	0.334	2 1 2 2	17600.0		
	2-B _{3u}	7-b _{1u} → 5-b _{2g}	0.334	2.162	17600.9	508.2	0.640
	1-B _{2u}	$7-b_{1u} → 5-b_{3g}$	0.308	2 0 7 2	16715 7	509.2	0.022
TPSSh	1-B _{3u}	$7-b_{1u} → 5-b_{2g}$	0.308	2.072	16/15./	598.2	0.055
	2-B _{2u}	$2-a_u \rightarrow 5-b_{2g}$	0.331	2 1 7 2	17528.8	570.5	0.115
	2-B _{3u}	2-a _u → 5-b _{3g}	0.331	2.1/3			0.112

Table SI9. Continuation

Method	Statos	Configuration	Woight		ΔΕ			
wiethod	States	Configuration	weight	eV	cm ⁻¹	nm	J (10-4)	
	1 D	$2-a_u \rightarrow 5-b_{2g}$	0.169				0.054	
	1-B _{2u}	7-b _{1u} → 5-b _{3g}	0.162	2.000	10000.0	599.4		
	1-B _{3u}	2-a _u → 5-b _{3g}	0.169	2.068	10082.2			
סעוכס		7-b _{1u} → 5-b _{2g}	0.162					
BSLIP	2.0	2-a _u → 5-b _{2g}	0.215					
	2-B _{2u}	7-b _{1u} → 5-b _{3g}	0.211	2 1 7 2	17520.0	570.7	0 1 2 2	
	2.0	2-a _u → 5-b _{3g}	0.215	2.172	17520.8	570.7	0.122	
	2-D3u	$7-b_{1u} \rightarrow 5-b_{2g}$	0.221					
	1-B _{2u}	2-a _u → 5-b _{2g}	0.160	2.052			0.055	
		7-b _{1u} → 5-b _{3g}	0.142			604.2		
	1-B _{3u}	2-a _u → 5-b _{3g}	0.152		10551.5	004.2		
DREO		7-b _{1u} → 5-b _{2g}	0.142					
PBEU	2.0	2-a _u → 5-b _{2g}	0.226					
	2-B _{2u}	7-b _{1u} → 5-b _{3g}	0.247	2 1 9 0	17651 4		0.002	
	2.0	2-a _u → 5-b _{3g}	0.226	2.109	17051.4	500.5	0.095	
	2-D _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.247					
	1-B _{2u}	2-a _u → 5-b _{2g}	0.382	2 021	16295.0	610.2	0 704	
MOG	1-B _{3u}	2-a _u → 5-b _{3g}	0.382	2.031	10202.0	010.3	0.704	
	2-B _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.390	2 1 5 5	17200 1	E7E 4	0.505	
	2-B _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.390	2.100	17380.1	575.4	0.505	

Table SI9. Continuation

Mathad	States	Configuration	Weight		ΔE		f (10-4)
wiethod	States	comgutation	weight	eV	cm⁻¹	nm	
	1-B2u	$2-a_u \rightarrow 5-b_{2g}$	0.176				0.005
		$2-a_u \rightarrow 5-b_{3g}$	0.132	1 0 9 2	15000 5	625.4	
	1 02	$2-a_u \rightarrow 5-b_{2g}$	0.132	1.982	15969.5	025.4	0.005
	1-B30	$2-a_u \rightarrow 5-b_{3g}$	0.176				
CAIVI-DSLIP	2 0211	$2-a_u \rightarrow 5-b_{2g}$	0.178				
	2-B2U	$7-b_{1u} \rightarrow 5-b_{3g}$	0.315	2.250	18147.2	551.0	0.076
	2-B3u	$2-a_u \rightarrow 5-b_{3g}$	0.267				
		7-b _{1u} → 5-b _{2g}	0.217				
	1 02	$2-a_u \rightarrow 5-b_{2g}$	0.189		15940.2	C20.0	0.114
	1-820	$2-a_u \rightarrow 5-b_{3g}$	0.121	1 065			
	1 02	$2-a_u \rightarrow 5-b_{2g}$	0.121	1.905	15649.2	050.9	0.114
	1-B30	$2-a_u \rightarrow 5-b_{3g}$	0.189				
WB37X	2 0211	2-a _u → 5-b _{2g}	0.173				
	2-820	7-b _{1u} → 5-b _{3g}	0.316	2 205	19510.2	540.2	0 195
	2_0211	$2-a_u \rightarrow 5-b_{3g}$	0.173	2.295	18510.3	540.2	6.105
	2-D3U	$7-b_{1u} \rightarrow 5-b_{2g}$	0.316				

Table SI10. TD-DFT data obtained for B-band of CoP. Transition energy (ΔE , in eV, in cm⁻¹ and the respective wavelength, λ , in nm), oscillator strength (*f*) and configurations calculated with different functionals and def2-TZVP basis set

Mathad	States	Configuration	Weight		ΔΕ			
wiethod	States	Configuration	weight	eV	cm⁻¹	nm	J	
	2.0	$2-a_u \rightarrow 5-b_{2g}$	0.249					
DDQC	3-d _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.230	2 4 9 1	20006 7	400.9	0 00380	
BPOO	2.0	$2-a_u \rightarrow 5-b_{3g}$	0.249	2.401	20006.7	499.8	0.00580	
	3-D _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.230					
	2.0	$2-a_u \rightarrow 5-b_{2g}$	0.249			500.7		
OLVE	3-B _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.231		10072.0		0.00398	
OLYP	2.0	$2-a_u \rightarrow 5-b_{3g}$	0.233	2.476	19973.9			
	3-B3u	$7-b_{1u} \rightarrow 5-b_{2g}$	0.246					
	3-B _{2u}	$2-a_u \rightarrow 5-b_{2g}$	0.257		20415.3		0.00714	
MOG		$7-b_{1u} \rightarrow 5-b_{3g}$	0.226	2 5 2 1		490.9		
IVIUO-L	2.0	$2-a_u \rightarrow 5-b_{3g}$	0.257	2.531		-05.0		
	3-D3u	$7-b_{1u} → 5-b_{2g}$	0.226					
	2.0	$2-a_u \rightarrow 5-b_{2g}$	0.234					
TDSCh	3-d _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.214	2 5 6 4	20680.0	492 F	0.00566	
19550	2.0	$2-a_u \rightarrow 5-b_{3g}$	0.234	2.304	20680.9	483.5	0.00500	
	3-B _{3u}	$7-b_{1u} \rightarrow 5-b_{2g}$	0.214					
	2.0	$2-a_u \rightarrow 5-b_{2g}$	0.237					
	3-d _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.211	2 5 6 2	20667.7	402.0	0.00740	
	2.0	$2-a_u \rightarrow 5-b_{3g}$	0.237	2.302	20667.7	483.8	0.00740	
	5-D3u	$7-b_{1u} \rightarrow 5-b_{2g}$	0.211					

Table SI10. Continuation

Mathad	States	Configuration Weight	Woight		ΔE		f
Wethod	States		vveigitt	eV	cm⁻¹	nm	
	3-B _{2u}	$2-a_u → 5-b_{2g}$	0.243				0.00%60
DREO		$7-b_{1u} \rightarrow 5-b_{3g}$	0.213	2 601	20080 5	176.6	
PBEO	2_ P _	$2-a_u \rightarrow 5-b_{3g}$	0.243	2.601	20980.5	470.0	0.00800
		$7-b_{1u} \rightarrow 5-b_{2g}$	0.213				
	2_ P _	$2-a_u → 5-b_{2g}$	0.269				
M06	3-b _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.233	2.510	20247.5	493.9	0.01138
	3-B _{3u}	$2-a_u → 5-b_{3g}$	0.269				
		$7-b_{1u} \rightarrow 5-b_{2g}$	0.233				
	2.0	$2-a_u → 5-b_{2g}$	0.267		20022.0	7 2 2	0.01350
	3-0 _{2u}	$7-b_{1u} \rightarrow 5-b_{3g}$	0.217	2 505			
CAIN-DOLLIF	3-Bo	$2-a_u \rightarrow 5-b_{3g}$	0.267	2.555	20955.8	477.7	
	3-03u	$7-b_{1u} \rightarrow 5-b_{2g}$	0.217				
	2_ P _	$2-a_u → 5-b_{2g}$	0.268				
ωB97X	3-02u	$7-b_{1u} \rightarrow 5-b_{3g}$	0.214	2 5 7 2	20700 2	191 0	0.01422
	3-B-	$2-a_u \rightarrow 5-b_{3g}$	0.268	- 2.578	20790.3	401.0	0.01433
	J-D3u	$7-b_{1u} \rightarrow 5-b_{2g}$	0.214				

Table SI11. TD-DFT data obtained for charge transfer transition of CoP. Transition energy (ΔE , in eV, in cm⁻¹ and the respective wavelength, λ , in nm), oscillator strength (*f*) and configurations calculated with different functionals and def2-TZVP basis set

Mathad	Statos	Configuration	Turne	14/aiaba		ΔE		£
wiethod	States	Configuration	туре	weight	eV	cm⁻¹	nm	J
	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	1.000	1.36	10977	911	3.183
DDQC	2-B _{1u}	$5-b_{1u} \rightarrow 24-a_g$	LMCT	0.999	2.78	22432	446	9.896
DPOO	3-B _{1u}	$6-b_{1u} \rightarrow 25-a_g$	LMCT	0.991	3.41	27515	363	1.160
	4-B _{1u}	15-b _{1g} → 3-a _u	MLCT	0.999	3.46	27874	359	0.043
	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.999	1.36	10941	914	2.938
OLVD	2-B _{1u}	$5-b_{1u} \rightarrow 24-a_g$	LMCT	0.999	2.77	22372	447	9.294
ULTP	3-B _{1u}	$6-b_{1u} \rightarrow 25-a_g$	LMCT	0.993	3.31	26657	375	1.183
	4-B _{1u}	15-b _{1g} → 3-a _u	MLCT	1.000	3.40	27403	365	0.035
	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.970	2.32	18685	535	2.992
IVIUO-L	2-B _{1u}	$6-b_{1u} \rightarrow 25-a_g$	LMCT	0.989	3.76	30362	329	0.386
TPSSh	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	1.000	2.63	21184	472	7.558
B3LYP	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.989	2.95	23774	421	9.399
PBEO	1-B _{1u}	7-b _{1u} → 24-a _g	LMCT	0.984	3.53	28444	352	11.703
M06	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.994	2.69	21725	460	7.654
CAM-B3LYP	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.949	3.60	29010	345	14.315
ωB97X	1-B _{1u}	$7-b_{1u} \rightarrow 24-a_g$	LMCT	0.933	3.60	29044	344	19.521

4. Ground and excited states (CASSCF/NEVPT2)

Table SI12. Configurations for the possible CoP ground states. CAS(15,11)/NEVPT2 level of theory using cc-pVTZ-DK basis set. For notation simplification we will adopt the D_{4h} notation only for the $E_{g/u}$ states and orbitals ($B_{2g/u} + B_{3g/u}$ in the D_{2h} notation)

			Orbital occupation							weight*	
State		Cobalt Orbitals			Porphyrin Orbitals						
		d _{z2}	d _{x2-γ2}	d _{xy}	d _{xz/yz}	2nb _{1u}	nb _{1u}	b _{1u} **	eg**	a _u **	
² Ag		1	0	2	4	2	2	2	0	2	0.89
² E _g	1	2	0	2	3	2	2	2	0	2	0.82
	2	1	1	2	3	2	2	2	0	2	0.06
⁴ B _{1g}		2	1	2	2	2	2	2	0	2	0.92
⁴ Eg	1	1	1	2	3	2	2	2	0	2	0.59
	2	2	1	0	3	2	2	2	0	2	0.33

* ≥ 0.05

** Gouterman's orbitals.

Table SI13. Configurations for selected CoP doublet excited states (at the CASSCF (15,11) level of theory) and NEVPT2 energies using cc-pVTZ-DK basis set. $E[x \rightarrow y] |\Psi\rangle$ indicates the excitation from orbital x to orbital y over configuration $|\Psi\rangle$. Assignments of Q and B bands are indicated. Oscillator strengths (*f*) were calculated with CASSCF transition moments and NEVPT2 transition energies. For notation simplification we will adopt the D_{4h} notation for the E_{g/u} states and orbitals (B_{2g/u}+B_{3g/u} in the D_{2h} notation)

Transition	Evaitation	Excitation weight*		Energy			
Transition	Excitation	weight*	eV	cm ⁻¹	nm	J	
² Ag→ ² Eu	$E[a_{u} { ightarrow} e_{g}] \mid^{2} A_{g} angle$	0.59	2 2 2	17 047	667	0 100 2	
(Q-band)	$E[b_{1u} \rightarrow e_g] ^2 A_g \rangle$	0.35	2.25	1/94/	100	9.198-2	
² Ag→ ² Eu	$E[b_{1u} \rightarrow e_g] ^2 A_g \rangle$	0.50	2.07	24 747	404	2.60	
(B-band)	$E[a_u \rightarrow e_g] ^2 A_g \rangle$	0.29	3.07	24 /4/	404	2.69	
20.025	$E[nb_{1u} \rightarrow e_g] ^2 A_g \rangle$	0.80	2 4 2	27 644	262	7 10 2 2	
⁻ Ag→ ⁻ Eu	E[2nb _{1u} \rightarrow e _g] ² A _g \rangle	0.09	3.43	27 044	302	7.10e-2	
20 25	E[2nb _{1u} \rightarrow e _g] ² A _g \rangle	0.80	2 71	20.014	224	4 270 1	
⁻ Ag→ ⁻ Eu	$E[nb_{1u} \rightarrow e_g] ^2 A_g \rangle$	0.10	3.71	29 914	334	4.27e-1	
2A ->2F	$E[d_{z2}a_u {\rightarrow} d_{x2\text{-}y2}e_g] \mid {}^2A_g \rangle$	0.43	1 E E	26 71 9	272	2 720 1	
-Ag→-Eu	$E[d_{z2}b_{1u}{\rightarrow}d_{x2\text{-}y2}e_g]\mid^2\!\!A_g\rangle$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.72e-1				
$^{2}E_{g}\rightarrow ^{2}B_{1u}^{(a)}$	$E[a_u \rightarrow e_g] ^2 E_g \rangle$ 1	0.50	2 20	17 740	564	2 770 2	
(Q-band)	$E[b_{1u}\rightarrow e_g] ^2 E_g \rangle_1$	0.36	2.20	17 947 33 24 747 404 27 644 363 29 914 334 36 718 273 17 740 564 17 964 557 22 023 454 22 685 44	504	5.778-2	
${}^{2}E_{g} \rightarrow {}^{2}B_{1u}$	$E[a_u \rightarrow e_g] ^2 E_g \rangle$ 1	0.54	2 2 2 2	17.064	667	4 4 9 0 0	
(Q-band)	$E[b_{1u}\rightarrow e_g] ^2E_g \rangle_1$	0.32	2.23	17 964	100	4.486-2	
² r 20	$E[nb_{1u} \rightarrow e_g] ^2 E_g \rangle_1$	0.68	2 7 2	22 022	454	0 100 1	
-Eg→-B _{1u}	$E[nb_{1u}\rightarrow d_{xz/yz}] ^{2}E_{g}\rangle$ 1	0.09	2.75	22 025	454	0.200-2	
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	$E[a_u \rightarrow e_g] ^2 E_g \rangle_1$	0.30	2 01	22 605	111	1 26	
(B-band)	$E[b_{1u}\rightarrow e_g] ^2 E_g \rangle_1$	0.46	2.01	22 005	441	1.20	

Table SI13. Continuation

Tropoition	Evaluation			Energy		f
Transition	Excitation	weight*	eV	Energy nm f eV cm ⁻¹ nm 1.26 .95 23 778 421 1.26 .30 26 634 375 2.68e .37 27 216 367 7.02e .71 29 947 334 2.06e .73 30 068 333 1.51e .75 30 218 331 2.13e .74 38 256 261 4 04e	J	
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle$ 1	0.46	2.05	סדד כב	401	1.26
(B-band)	$E[a_u \rightarrow e_g] ^2 E_g \rangle$ 1	0.26	2.95	25776	421	1.20
2E →2D	$E[nb_{1u}\rightarrow e_g] ^2E_g \rangle_1$	0.72	2 20	26 624	275	2680.2
-∟g →-B _{1u}	$E[2nb_{1u}\rightarrow e_g] ^2E_g \rangle$ 1	0.10	5.50	20 034	575	2.000-2
25 20	$E[nb_{1u}\rightarrow e_g] ^2E_g \rangle_1$	0.58	2 27	27.216	267	7 0 2 0 2
[−] Eg→ [−] B _{1u}	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.22	5.57	27 210	307	7.02e-2
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.68				
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	$E[nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.10	3.71	29 947	334	2.06e-1
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_2$	0.06				
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_2$	0.30		3 30 068	333	1.51e-2
	$E[d_{xy}b_{1u}{\rightarrow}d_{x2\text{-}y2}e_g]\mid^2\!\!E_g\!$	0.28				
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	$E[d_{xy}b_{1u}{\rightarrow}d_{x2\text{-}y2}e_g]\mid^2\!\!E_g\!\rangle_1$	0.08	3.73			
	$E[d_{xy}nb_{1u}\rightarrow d_{x2-y2}e_g] ^2E_g\rangle_1$	0.06				
	$E[d_{xy}2nb_{1u}\rightarrow d_{x2-y2}e_g] ^2E_g\rangle_1$	0.12				
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.72				
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	$E[nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.08	3.75	30 218	331	2.13e-1
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_2$	0.06				
25 20	$E[d_{xy}b_{1u}\rightarrow d_{x2-y2}e_g] ^2E_g\rangle_1$	0.58	A 7A	20 25 6	261	4.046.2
⁻ Eg→ ⁻ B _{1u}	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle_2$	0.18	4./4	38 230	201	4.04e-2

Table SI13. Continuation

Tropoition	Evaluation			Energy		£
Transition	Excitation	weight* Energy 0.34 eV cm^{-1} 0.34 $A.94$ $A.94$ 0.18 $A.94$ $A.94$ 0.12 $A.94$ $A.94$ 0.54 2.19 $A.798$ 0.32 2.99 $A.076$ 0.28 2.99 24.076 0.24 3.01 24.252 0.24 3.43 27.625 0.06 3.44 27.726 0.06 3.44 27.726 0.06 3.44 27.726	nm	J		
	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle_2$	0.34				
25 . 25	$E[d_{xy}b_{1u}{\rightarrow}d_{x2\text{-}y2}e_g]\mid^2\!\!E_g\rangle_1$	0.18	4.04	20.070	254	1 2 5 0 2
² Eg→ ² B _{1u}	$E[d_{xz}d_{yz}b_{1u} {\rightarrow} d_{x2\text{-}y2}d_{x2\text{-}y2}e_g] \left {}^2E_g \right\rangle \ _1$	0.12	4.94	39870	251	1.200-2
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.10			y nm '0 251 '0 251 '5 567 '8 556 '6 415 '2 412 '2 362 '2 362 '2 361 '3 334	
$^{2}E_{g}\rightarrow ^{2}A_{u}$	$E[a_u \rightarrow e_g] ^2 E_g \rangle_1$	0.54	2.10	17.005	F.C.7	F 4F - 2
(Q-band)	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle$ 1	0.32	2.19	17 635	567	5.15e-2
² Eg→ ² Au	$E[a_u \rightarrow e_g] ^2 E_g \rangle_1$	0.54	2.22	17.000	556	4.70 - 0
(Q-band)	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle$ 1	0.32	2.23	17 998	556	4.70e-2
² E _g → ² A _u	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle$ 1	0.50	2.00	24.070	115	1.20
(B-band)	$E[a_u \rightarrow e_g] ^2 E_g \rangle_1$	0.28	2.99 24 076 41 0.28	415	1.38	
² E _g → ² A _u	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle$ 1	0.48	2.01	24.252	410	1.21
(B-band)	$E[a_u \rightarrow e_g] ^2 E_g \rangle_1$	0.24	3.01	24 252	412	1.31
	$E[nb_{1u} \rightarrow e_g] ^2 E_g \rangle_1$	0.74				
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.08	3.43	27 625	362	2.28e-2
	$E[nb_{1u}\rightarrow e_g] ^2E_g\rangle_2$	0.06				
	$E[nb_{1u} \rightarrow e_g] ^2 E_g \rangle_1$	0.74				
$^{2}E_{g}\rightarrow ^{2}A_{u}$	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.08	3.44	27 726	361	2.41e-2
	$E[nb_{1u}\rightarrow e_g] ^2E_g \rangle_2$	0.06				
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_1$	0.74				
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	$E[nb_{1u}\rightarrow e_g] ^2E_g \rangle_1$	0.08	3.71	29 913	334	2.07e-1
	$E[2nb_{1u}\rightarrow e_g] ^2E_g\rangle_2$	0.06				

Table SI13. Continuation

Transition	Evoltation	woight*		Energy		f
Transition	Excitation	weight	eV	cm⁻¹	nm	J
	$E[2nb_{1u}\rightarrow e_g] ^2E_g \rangle$ 1	0.66				
$^{2}E_{g}\rightarrow ^{2}A_{u}$	$E[nb_{1u}\rightarrow e_g] ^2E_g \rangle$ 1	0.08	3.87	31 243	320	1.99e-1
	$E[2nb_{1u}\rightarrow e_g] ^2E_g \rangle_2$	0.06				
	$E[d_{xy}b_{1u}\rightarrow d_{x2-y2}e_g] ^2E_g \rangle _2$	0.64				
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	$E[d_{xy}b_{1u}\rightarrow d_{x2-y2}e_g] ^2E_g \rangle$ 1	0.10	4.54	36 623	273	1.13e-1
	$E[b_{1u} \rightarrow e_g] ^2 E_g \rangle_2$	0.06				
	$E[a_u \rightarrow e_g] ^2 E_g \rangle_2$	0.34				
$^{2}E_{g}\rightarrow ^{2}A_{u}$	$E[d_{xy}a_u \rightarrow d_{x2-y2}e_g] ^2E_g \rangle_1$	0.30	5.28	42 579	235	3.06e-2
	$E[d_{xz}d_{yz}b_{1u} {\rightarrow} d_{x2\text{-}y2}d_{x2\text{-}y2}e_g] \mid^2 E_g \rangle \ _1$	0.16				
	$E[a_u \rightarrow e_g] ^2 E_g \rangle_2$	0.40				
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	$E[d_{xy}a_u \rightarrow d_{x2-y2}e_g] ^2E_g \rangle_1$	0.24	5.48	44 205	226	2.23e-2
	$E[d_{xz}d_{yz}b_{1u}{\rightarrow}d_{x2\text{-}y2}d_{x2\text{-}y2}e_g]\mid^2 E_g\rangle_{1}$	0.16				

* ≥ 0.05

 $^{(a)}$ The determinants from 2E_g states are indicated by a subscript index (e.g. $|^2E_g\rangle_{-1}$ and $|^2E_g\rangle_{-2}$) that follows the order from Table SI5.

Table SI14. Configurations for selected CoP quartet excited states (at the CASSCF (15,11) level of theory) and NEVPT2 energies using cc-pVTZ-DK basis set. $E[x \rightarrow y] |\Psi\rangle$ indicates the excitation from orbital x to orbital y over configuration $|\Psi\rangle$. Assignments of Q and B bands are indicated. Oscillator strengths (*f*) were calculated with CASSCF transition moments and NEVPT2 transition energies. For notation simplification we will adopt the D_{4h} notation only for the E_{g/u} states and orbitals (B_{2g/u}+B_{3g/u} in the D_{2h} notation). See also footnotes of Table SI12

Tropoition	Evoltation	woight*		Energy		f
Transition	Excitation	weight	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J		
⁴ B _{1g} → ⁴ E _u	$E[a_u \! ightarrow \! e_g] \mid {}^4B_{1g} \rangle$	0.58	2.15	17 245	E 7 7	97400
(Q-band)	$E[b_{1u}{ o}e_{g}]\mid^4\!\!B_{1g} angle$	0.37	2.15	17 545	577	0.740-2
⁴ B _{1g} → ⁴ E _u	$E[b_{1u}{ o}e_g]\mid^4\!\!B_{1g}\! angle$	0.49	2.00	24.007	401	2 22
(B-band)	$E[a_{u} { ightarrow} e_{g}] \mid {}^{4}B_{1g} angle$	0.28	5.09	24 907	401	2.55
4D \4F	$E[2nb_{1u} o\!e_{g}]\mid^4\!\!B_{1g} angle$	0.85	2.46	22.062	250	26102
'B _{1g} → 'E _u	E[nb₁u→eg] ⁴B₁g〉	0.06	3.40	2/80/	309	3.010-2
	$E[b_{1u}{ o}e_g] \mid {}^4B_{1g} angle$	0.49				
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	$E[d_{xy}d_{x2\text{-}y2}b_{1u}{\rightarrow}d_{xz}d_{yz}e_g]\mid {}^4B_{1g}\rangle$	0.32	3.63	29 265	342	1.65e-1
	$E[a_u \rightarrow e_g] {}^4B_{1g} \rangle$	0.05				
	$E[2nb_{1u}\rightarrow e_g] ^4B_{1g}\rangle$	0.83	2.66	20,406	220	4 70 - 1
⁻ B _{1g} → ⁻ E _u	E[nb₁u→eg] ⁴B₁g〉	0.09	3.00	29 496	339	4.790-1
	$E[nb_{1u} \rightarrow e_g] {}^4B_{1g} \rangle$	0.62				
40 45	$E[b_{1u} \rightarrow e_g] ^4B_{1g} \rangle$	0.13	2.00	20 700	227	F 41a 2
⁻ B _{1g} → ⁻ E _u	$E[d_{xy}d_{z2}b_{1u}{\rightarrow}d_{xz}d_{yz}e_g] \mid {}^4B_{1g}\rangle$	0.11	3.08	29 700	337	5.41e-2
	$E[2nb_{1u}\rightarrow e_g] ^4B_{1g}\rangle$	0.06				
	$E[d_{xy}d_{z2}b_{1u}{\rightarrow}d_{xz}d_{yz}e_g]\mid {}^4B_{1g}\rangle$	0.54	4 1 0	22 (22	207	4 72 0 2
⁻	$E[b_{1u} \rightarrow e_g] {}^4B_{1g} \rangle$	0.33	4.18	33 683	297	4.73e-2
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	$E[b_{1u} \rightarrow e_g] ^4 B_{1g} \rangle$	0.79	4.35	35 083	285	1.99e-2

Table SI14. Continuation

Tropoition	Fucitation			Energy		f
Transition	Excitation	weight	Energy eV cm ⁻¹ nm 4.39 35 414 2822 4.45 35 909 278 4.74 38 244 2611 4.75 38 273 261 2.18 17 609 568 2.22 17 878 559	J		
4D \4F	$E[d_{xy}d_{z2}b_{1u}{\rightarrow}d_{xz}d_{yz}e_g]\mid {}^4B_{1g}\rangle$	0.54	4 20	25 414	202	1 260 2
'B _{1g} → 'E _u	$E[a_{u} { o} e_{g}] \mid {}^{4}B_{\mathtt{lg}} \rangle$	0.33	4.59	55 414	202	1.500-2
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	$E[a_u \rightarrow e_g] ^4 B_{1g} \rangle$	0.74	4.45	35 909	278	1.28e-2
	$E[a_u \rightarrow e_g] ^4 B_{1g} \rangle$	0.45		20.244	201	2 5 2 6 1
⁻ B _{1g} → ⁻ E _u	$E[d_{xy}d_{z2}a_u{\rightarrow}d_{xz}d_{yz}e_g]\mid {}^4B_{1g}\rangle$	0.43	4.74	38 244	201	2.53e-1
	$E[d_{z2}d_{z2}a_u {\rightarrow} d_{xz}d_{yz}e_g] \mid {}^4B_{1g} \rangle$	0.69				
	$E[a_u \rightarrow e_g] ^4 B_{1g} \rangle$	0.09	475	38 273	261	8.87e-3
⁻ B _{1g} → ⁻ E _u	$E[d_{xy}d_{xy}a_u {\rightarrow} d_{xz}d_{yz}e_g] \mid {}^4B_{1g} \rangle$	0.06	4.75			
	$E[d_{xy}a_u \rightarrow d_{x2-y2}e_g] {}^4B_{1g} \rangle$	0.05				
		•	•			
	$E[a_u \rightarrow e_g] {}^4E_g \rangle$ 1	0.36				
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}^{(a)}$	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle$ 1	0.26	2.10	17.00	FCO	2 70 - 2
(Q-band)	$E[a_u \rightarrow e_g] ^4 E_g \rangle_2$	0.20	2.18	17 609	508	3.78e-2
	$E[b_{1u}\rightarrow e_g] ^4E_g \rangle_2$	0.14				
	$E[a_u \rightarrow e_g] {}^4E_g \rangle _1$	0.38				
⁴ E _σ → ⁴ B ₁	$E[a_u \rightarrow e_g] ^4 E_g \rangle_2$	0.24		47.070	550	474-2
(Q-band)	$E[b_{1u}\rightarrow e_g] {}^4E_g \rangle _1$	0.20	2.22	17 878	559	4.74e-2
	$E[b_{1u}\rightarrow e_g] {}^4E_g \rangle _2$	0.12				

Table SI14. Continuation

Transition	Evcitation	weight*	Energy			f
Transition		weight	eV	cm⁻¹	nm	J
⁴ E _g → ⁴ B _{1u}	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle$ 1	0.32				1.25
	$E[a_u \rightarrow e_g] {}^4E_g \rangle$ 1	0.26	2.05	23 830	420	
(B-band)	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.16	2.95			
	$E[a_u \rightarrow e_g] {}^4E_g \rangle _2$	0.10				
	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle$ 1	0.34			415	1.34
⁴ E _g → ⁴ B _{1u}	$E[a_{u} { ightarrow} e_{g}] \mid {}^{4}E_{g} angle \ _{1}$	0.22	2.00	24 110		
(B-band)	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.20	2.99	24 110		
	$E[a_u \rightarrow e_g] ^4 E_g \rangle_2$	0.10				
⁴ E _g → ⁴ B _{1u}	E[nb₁u→eg] ⁴ Eg〉 1	0.56		25 546	391	1.24e-2
	E[nb₁u→eg] ⁴ Eg〉 2	0.28	3.17 25 546			
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_1$	0.08				
	$E[nb_{1u} \rightarrow e_g] {}^4E_g angle $	0.56	3.31	26 715	374	3.18e-2
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	$E[nb_{1u} \rightarrow e_g] {}^4E_g angle ~_2$	0.26				
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle$ 1	0.08				
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.52				
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle _2$	0.26	3.41 2	27 509	364	6.61e-2
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.10				
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle$ 1	0.46	3.63 29	29 297	341	1.58e-2
⁴ Eg→ ⁴ B _{1u}	E[2nb _{1u} \rightarrow e _g] ⁴ E _g \rangle ₂	0.18				
	$E[nb_{1u} \rightarrow e_g] {}^4E_g angle ~_2$	0.08				
	$E[d_{z2}b_{1u}\rightarrow d_{x2-y2}e_g] ^4E_g\rangle_2$	0.08				
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.06				

Table SI14. Continuation

Tropoition	Fuelded in a		Energy			c
Transition	Excitation	weight*	eV	cm⁻¹	nm	J
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_1$	0.54		29 313	341	2.19e-1
⁴ E _g → ⁴ B _{1u}	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_2$	0.26	3.63			
	$E[nb_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.08				
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_1$	0.54		29 879	335	2.23e-1
⁴ E _g → ⁴ B _{1u}	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_2$	0.30	3.70			
	$E[nb_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.06				
	$E[b_{1u}\rightarrow e_g] {}^4E_g \rangle _1$	0.62	4.31 34 7		288	2.50e-2
⁴ E _g → ⁴ B _{1u}	$E[b_{1u}\rightarrow e_g] ^4E_g \rangle_2$	0.22		34 740		
⁴ E _g → ⁴ B _{1u}	$E[d_{xy}a_u \rightarrow d_{x2-y2}e_g] {}^4E_g \rangle _1$	0.66				2.15e-2
	$E[a_u \rightarrow e_g] ^4 E_g \rangle_2$	0.12	5.03	40 570	246	
	$E[b_{1u}\rightarrow e_g] ^4E_g \rangle_1$					
			•			
	E[au→eg] ⁴ Eg〉 1	0.38			567	5.04e-2
⁴ Eg→ ⁴ Au	E[au→eg] ⁴ Eg〉 2	0.24	2.19	17 642		
(Q-band)	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle$ 1	0.22				
	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.12	0.12			
⁴ E _g → ⁴ A _u (Q-band)	$E[a_u \rightarrow e_g] ^4 E_g \rangle$ 1	0.38				
	$E[b_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.24				
	$E[a_u \rightarrow e_g] ^4 E_g \rangle_2$	0.22		17 /54	503	4.13e-2
	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.14				

Table SI14. Continuation

		woicht*	Energy			c
Iransition	Excitation	weight*	eV	cm ⁻¹	nm	J
⁴ E _a → ⁴ A ₁₁	$E[b_{1u}{ o}e_{g}]\mid^4E_{g} angle$ 1	0.34	2.93	23 636	423	1.34
	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.20				
(B-band)	E[a _u →e _g] ⁴ E _g > 1	0.18				
	$E[a_{u}{ o}e_{g}]\mid^{4}E_{g} angle$ 2	0.14				
	$E[b_{1u}{ o}e_{g}]\mid^{4}E_{g} angle$ 1	0.36			411	1.35
⁴ E _g → ⁴ A _u	$E[a_{u} { ightarrow} e_{g}] \mid {}^{4}E_{g} angle$ 1	0.20	2 01	24 207		
(B-band)	$E[b_{1u} \rightarrow e_g] ^4 E_g \rangle_2$	0.18	3.01	24 507		
	$E[a_{u}{ o}e_{g}]\mid^{4}E_{g} angle$ 2	0.12				
⁴ E _g → ⁴ A _u	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle$ 1	0.52	2.26	27.000	260	2 06e-2
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle _2$	3.30	27 055	505	2.000 2	
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle$ 1	0.52	3.42	27 574	363	3.43e-2
	$E[nb_{1u}\rightarrow e_g] {}^4E_g \rangle _2$	0.32		27 574		
	$E[2nb_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.36	3.61 29 119		343	8.75e-3
⁴ E _g → ⁴ A _u	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_2$	0.30		29 119		
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle$ 1	0.08				
	$E[2nb_{1u} \rightarrow e_g] {}^4E_g \rangle _1$	0.48).48			
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	$E[2nb_{1u} \rightarrow e_g] {}^4E_g \rangle _2$	0.34	3.67	29 598	338	2.27e-1
	$E[nb_{1u} \rightarrow e_g] {}^4E_g \rangle$ 1	0.10				
	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_1$	0.52	0.52			
⁴ E _g → ⁴ A _u	$E[2nb_{1u}\rightarrow e_g] ^4E_g\rangle_2$	0.32	3.71	29 918	334	2.23e-1
	$E[nb_{1u} \rightarrow e_g] ^4 E_g \rangle_1$	0.08				
45	E[a _u →e _g] ⁴ E _g 〉 1	0.62	4.42	25 622	281	5.67e-2
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	$E[a_u \rightarrow e_g] {}^4E_g \rangle _2$	0.24	4.42 35	55 G32		

Table SI15. Transitions energies (in eV) and oscillator strength (*f*) dependence with the basis set cardinality. CAS(15,11)/NEVPT2 level of theory using cc-pVnZ-DK basis set. The transitions were ordered based on the reference wavefunction, these had small changes with the basis set increasing. For notation simplification we will adopt the D_{4h} notation only for the $E_{g/u}$ states ($B_{2g/u} + B_{3g/u}$ in the D_{2h} notation)

Transition	cc-pV	DZ-DK	cc-pVTZ-DK		cc-pV	QZ-DK
	Energy	f	Energy	f	Energy	f
$^{2}A_{g}\rightarrow ^{2}E_{g}$	2.28	9.11e-2	2.23	9.19e-2	2.22	9.10e-2
$^{2}A_{g}\rightarrow ^{2}E_{g}$	3.59	2.31	3.07	2.69	3.02	2.72
$^{2}A_{g}\rightarrow ^{2}E_{g}$	3.54	7.69e-2	3.43	7.10e-2	3.41	6.72e-2
$^{2}A_{g}\rightarrow ^{2}E_{g}$	3.89	4.51e-1	3.71	4.27e-1	3.67	4.24e-1
$^{2}A_{g}\rightarrow ^{2}E_{g}$	4.24	1.21	4.55	2.72e-1	4.55	1.95e-1
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	2.25	3.70e-2	2.20	3.77e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	2.28	4.44e-2	2.23	4.48e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	2.81	1.23e-1	2.73	8.28e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	2.90	1.29	2.81	1.26		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.04	1.17	2.95	1.26		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.23	1.82e-2	3.30	2.68e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.48	2.99e-2	3.37	7.02e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.60	7.16e-2	3.71	2.06e-1		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.74	7.66e-3	3.73	1.51e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	3.89	2.27e-1	3.75	2.13e-1		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	4.63	8.40e-3	4.74	4.04e-2		
$^{2}E_{g}\rightarrow ^{2}B_{1u}$	4.92	9.51e-3	4.94	1.26e-2		

Table SI15. Continuation

Transition	cc-pV	/DZ-DK	cc-pVTZ-DK		cc-pV	QZ-DK
	Energy	f	Energy	f	Energy	f
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	2.24	5.18e-2	2.19	5.15e-2		
$^{2}E_{g}\rightarrow^{2}A_{u}$	2.29	4.66e-2	2.23	4.70e-2		
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	3.04	1.36	2.99	1.38		
$^{2}E_{g}\rightarrow^{2}A_{u}$	3.14	1.41	03.01	1.31		
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	3.55	2.51e-2	3.43	2.28e-2		
$^{2}E_{g}\rightarrow^{2}A_{u}$	3.61	2.62e-2	3.44	2.41e-2		
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	3.88	2.17e-1	3.71	2.07e-1		
$^{2}E_{g}\rightarrow^{2}A_{u}$	3.94	2.19e-1	3.87	1.99e-1		
$^{2}E_{g}\rightarrow^{2}A_{u}$	4.76	2.02e-2	4.54	1.13e-1		
$^{2}E_{g}\rightarrow^{2}A_{u}$	5.37	9.04e-2	5.28	3.06e-2		
${}^{2}E_{g} \rightarrow {}^{2}A_{u}$	5.61	3.54e-2	5.48	2.23e-2		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	2.20	8.65e-2	2.15	8.74e-2		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	3.19	2.38	3.09	2.33		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	3.11	2.59e-3	3.46	3.61e-2		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	3.60	4.00e-2	3.63	1.65e-1		
⁴ B _{1g} → ⁴ E _u	3.74	1.46e-1	3.66	4.79e-1		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	3.84	5.07e-1	3.68	5.41e-2		
$^{4}B_{1g} \rightarrow ^{4}E_{u}$	4.29	6.46e-2	4.18	4.73e-2		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	4.46	2.51e-2	4.35	1.99e-2		
$^{4}B_{1g} \rightarrow ^{4}E_{u}$	4.50	1.68e-2	4.39	1.36e-2		

Table SI15. Continuation

Transition	cc-pV	/DZ-DK	cc-pVTZ-DK		cc-pVQZ-DK	
	Energy	f	Energy	f	Energy	f
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	4.57	1.28e-1	4.45	1.28e-2		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	4.88	2.77e-1	4.74	2.53e-1		
${}^{4}B_{1g} \rightarrow {}^{4}E_{u}$	4.90	3.55e-3	4.75	8.87e-3		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	2.28	4.70e-2	2.18	3.78e-2		
⁴ E _g → ⁴ B _{1u}	2.24	3.70e-2	2.22	4.74e-2		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	3.05	1.27	2.95	1.25		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	3.09	1.37	2.99	1.34		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	3.26	1.62e-2	3.17	1.24e-2		
⁴ E _g → ⁴ B _{1u}	3.42	3.43e-2	3.31	3.18e-2		
⁴ E _g → ⁴ B _{1u}	3.53	7.24e-2	3.41	6.61e-2		
⁴ E _g → ⁴ B _{1u}	3.65	1.65e-2	3.63	1.58e-2		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	3.81	2.32e-1	3.63	2.19e-1		
⁴ E _g → ⁴ B _{1u}	3.88	2.37e-1	3.70	2.23e-1		
${}^{4}E_{g} \rightarrow {}^{4}B_{1u}$	4.42	2.91e-2	4.31	2.50e-2		
⁴ E _g → ⁴ B _{1u}	5.18	2.76e-2	5.03	2.15e-2		
⁴ E _g → ⁴ A _u	2.25	5.07e-2	2.19	5.04e-2		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	2.26	4.09e-2	2.20	4.13e-2		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	03.03	1.37	2.93	1.34		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	3.11	1.38	03.01	1.35		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	3.47	2.23e-2	3.36	2.06e-2		

Table SI15. Continuation

Transition	cc-pVDZ-DK		cc-pVTZ-DK		cc-pVQZ-DK	
	Energy	f	Energy	f	Energy	f
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	3.54	3.59e-2	3.42	3.43e-2		
⁴ E _g → ⁴ A _u	3.80	9.51e-3	3.61	8.75e-3		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	3.85	2.40e-1	3.67	2.27e-1		
⁴ E _g → ⁴ A _u	3.89	2.36e-1	3.71	2.23e-1		
${}^{4}E_{g} \rightarrow {}^{4}A_{u}$	4.55	5.00e-2	4.42	5.67e-2		