Supplementary Information: Physical Chemistry Chemical Physics:
Gate tunable self-powered few-layer black phosphorus broadband photodetector

Xiaofei Guo,a Liwen Zhang,b,d Jun Chen,a,d,* Xiaohong Zheng,c,b Lei Zhang,b,d,*

aState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
bState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
cKey Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
dCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
*chenjun@sxb.edu.cn and zhanglei@sxb.edu.cn
Figure S1 Band structure of three-layer BP when (a₁) $V_g = 0 \text{V}$; (a₃) $V_g = 6 \text{V}$; (a₄) $V_g = 11 \text{V}$. (a₂) The projected density of states (PDOS) of three-layer BP when $V_g = 0 \text{V}$. (b) Band gap E_g of three-layer BP versus the applied vertical gate voltage V_g in the system.
Figure S2 (a,b) The photoresponse of three-layer BP device along armchair direction versus photon energy E and the gate voltage V_g by circularly polarized photogalvanic effect (CPGE), respectively. (c,d) Photore- sponse of three-layer BP device along zigzag direction versus photon energy E and the gate voltage V_g under illumination by CPGE, respectively. The polarization angle $\phi = 45^\circ$.

\[R(a_0^2/\text{photon}) \times 10^{-3} \]
Figure S3 (a,b) The photoresponse versus the circular polarization angle ϕ along the armchair and zigzag directions, respectively. (c,d) The three components of the photoresponse versus the circular polarization angle ϕ along the armchair and zigzag directions, respectively. The three-layer BP device is illuminated by the circularly polarized light. The photon energy is fixed as $E = 0.025\text{eV}$.
Figure S4 (a) The extinction ratio versus with photon energy along the armchair and zigzag directions, respectively.