Electronic Supplementary Information

Acceptor-donor-acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism

Xiangjian Wan,a,c Chenxi Li,a Mingtao Zhang,a Yongsheng Chen *a,b,c

a The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
c Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China

1. HOMO/LUMO calculation and analysis for some A-D-A molecules
2. A semi-empirical model analysis for PCE prediction

2.1 For the semi-empirical analysis based on a single cell, the fundamental assumptions are made as follows:

1) An internal quantum efficiency (IQE) of 100% is considered for the whole absorption wavelengths.\(^1\)

2) EQE is assumed to be same in the whole absorption range with a given value of 80% and FF is assumed to be 0.8.

3) In the discussion as follows, the optical gap of the subcell \(E_g\) (\(= 1240/\lambda_{onset}\)) is defined as the narrower optical gaps of the donor-acceptor couples. Note, for the
fullerene based devices, the absorption onset is considered to be that of the donor materials. For the fullerene-free based devices, it referred to be that of material, either donor or acceptor, whichever has a narrower bandgap.2

Based on above assumptions, the three photovoltaic parameters V_{oc}, J_{sc} and FF of a single cell is obtained as follows:

1) For a single cell with absorption onset λ, the J_{sc} of the cell could be obtained from equation 1 (Eq. 1).

\[
J_{sc} = \int_{\lambda}^{\infty} \frac{q \lambda}{h c} E(\lambda) \cdot EQE(\lambda) \cdot d \lambda
\]

(1)

where $E(\lambda)$ is the spectral irradiance in AM 1.5G, λ is the absorption onset of the cell, h is Planck's constant, c is the speed of light and q is the elementary charge.

2) The V_{oc} of the cell is determined by the following Eq. 2.

\[
V_{oc} = \frac{1}{q} (E_{g} - E_{loss}) = \frac{1}{q} (\frac{1240}{\lambda} - E_{loss})
\]

(2)

The E_{loss} are assumed to be 0.4-0.8 eV according to overall reported values.3

So for the single cell, the PCE can be calculated from the Eq. 3 under AM 1.5G light illumination.

\[
PCE(%) = V_{oc} \cdot J_{sc} \cdot FF / P_{in}
\]

\[
= \frac{1}{q} (\frac{1240}{\lambda} - E_{loss}) \int_{\lambda}^{\infty} \frac{q \lambda}{h c} E(\lambda) \cdot EQE(\lambda) \cdot d \lambda \cdot FF / P_{in}
\]

(3)

2.2 For the semi-experimtal analysis based on a 2-terminal monolithic tandem cell with two subcells connected in series, the detailed description has been reported in literature.4 The Figure 7b in the ms is obtained under the given EQE of 80% and FF%.
References:

