Supporting information
For
Acetate-catalyzed hydroboration of CO₂ for the selective formation of methanol-equivalent products

Yuri C. A. Sokolovicz¹, David Specklin, Olalla Nieto Faza, Béatrice Jacques, Carlos Silva López, João H. Z. dos Santos, Henri S. Schrekker, Samuel Dagorne

¹Institute of Chemistry, Université de Strasbourg, CNRS, Strasbourg, France.

²Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

³Depto. Química Orgánica, Universidade de Vigo, Facultade de Ciencias Campus As Lagoas, 32004, Ourense, Spain

* Email: dagorne@unistra.fr, henri.schrekker@ufrgs.br
Table of Contents

Figures S1-S2. NMR data for [TBA][OAc] (1)	p. 3
Figures S3-S21. NMR data for catalytic CO\textsubscript{2} hydroboration with pinB–H	pp. 4-14
Figures S22-S27. NMR data for catalytic CO\textsubscript{2} hydroboration with H\textsubscript{3}B-SMe\textsubscript{2}	pp.14-17
Figures S28-S35. NMR data for borate 4	pp.18-21
Figures S36-S43. Molecular structures of TS-1 to TS-8 models (wB97xD/def2tzvpp//B3LYP/6-31G*)	pp. 22-25
Figure S44. DFT-estimated mechanism (wB97xD/def2tzvpp//B3LYP/6-31G*)	p. 26

of CO\textsubscript{2} hydroboration to model A’ through the formation of acetate-bridged dinuclear boron model VI’.
Figure S1. 1H NMR spectrum (C_6D_6) of [TBA][OAc] (1).

Figure S2. 13C NMR spectrum (C_6D_6) of [TBA][OAc] (1).
Figure S3. 1H NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (5 mol%). Conditions: C$_6$D$_6$; T = 90 °C; Time: 26 h; Borane conversion (82% conv) to a 11/1/4.7 HCO$_2$Bpin/H$_2$C(OBpin)/MeOBpin mixture. The residual C$_6$D$_6$ peak was used as an internal standard.

Figure S4. 11B NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (5 mol%). Conditions: C$_6$D$_6$; T = 90 °C; Time: 26 h; Borane conversion: 82%.
Figure S5. 1H NMR monitoring data of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (5 mol%) as a function of time. Conditions: C$_6$D$_6$; T = 90 °C. The residual C$_6$D$_6$ peak was used as an internal standard. *: HCO$_2$Bpin; °: H$_2$C(OBpin)$_2$; °°: MeOBpin.
Figure S6. 11B NMR monitoring data of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (5 mol%) as a function of time. Conditions: C_6D_6; $T = 90^\circ\text{C}$.
Figure S7. 1H NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C$_6$D$_6$; T: 90 °C; Time: 2 h; Borane conversion: 40%.

Figure S8. 11B NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C$_6$D$_6$; T: 90 °C; Time: 2 h; Borane conversion: 40%.
Figure S9. 1H NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C$_6$D$_6$; T: 90 °C; Time: 20 h; Borane conversion: 96 %.

Figure S10. 11B NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.5 mol%). Conditions: C$_6$D$_6$; T: 90 °C; Time: 20 h; Borane conversion: 96 %. Compounds A, B and C correspond to hydroboration products HCO$_2$Bpin (A), H$_2$C(OBpin)$_2$ (B) and MeOBpin (C), respectively.
Figure S11. 1H NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C$_6$D$_6$, T = 90 °C, 20 h; Borane conversion: 94%. Internal standard: hexamethylbenzene.

Figure S12. 13C NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C$_6$D$_6$, T = 90 °C; 46 h; Borane conversion: 94%. Internal standard: hexamethylbenzene.
Figure S13. 11B NMR spectrum after the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C$_6$D$_6$, T = 90 °C, 46 h; Borane conversion: 94%; Internal standard: hexamethylbenzene.

Figure S14. 1H NMR monitoring spectra of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C$_6$D$_6$, T = 90 °C. Internal standard: hexamethylbenzene.
Figure S15. Blow-up of the 1H NMR monitoring spectra of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%). Conditions: C$_6$D$_6$, T = 90 ºC. Internal standard: hexamethylbenzene.

Figure S16. 1H NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%) under solvent-free conditions after complete conversion to MeOBpin. Conditions: T = 90 ºC, 19 h. Internal standard: hexamethylbenzene.
Figure S17. 11B NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and [TBA][OAc] (0.1 mol%) under solvent-free conditions after complete conversion to MeOBpin. Conditions: T = 90 °C, 19 h. Internal standard: hexamethylbenzene.

Figure S18. 1H NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and NaOAc (0.1 mol% vs. H-Bpin). Conditions: C$_6$D$_5$Br, 120 °C, 65 h, Borane conv: 96% (hexamethylbenzene, internal standard).
Figure S19. 11B NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and NaOAc (0.1 mol% vs. H-Bpin). Conditions: C$_6$D$_5$Br, 120 °C, 65 h. Borane conv: 96%.

Figure S20. 1H NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and KOAc (0.1 mol% vs. H-Bpin). Conditions: C$_6$D$_5$Br, 120 °C, 65 h. Borane conversion: 94%. Internal standard: hexamethylbenzene.
Figure S21. 1B NMR spectrum of the reduction of CO$_2$ in the presence of HBpin and KOAc (0.1 mol% vs. H-Bpin). Conditions: C$_6$D$_5$Br, 120 °C, 65 h, 94% conversion to MeOBpin.

Figure S22. 1H NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (10 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, RT, 17 h. C$_6$Me$_6$ (δ 2.12) was used as an internal standard. Quantitative conversion to a 70/30 (MeOBO)$_3$/B(OMe)$_3$ mixture.
Figure S23. ^{11}B NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (10 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, RT, 17 h. C$_6$Me$_6$ was used as an internal standard. Quantitative borane conversion to a 70/30 (MeOBO)$_3$/B(OMe)$_3$ mixture.

Figure S24. ^1H NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (1 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, RT, 48 h. C$_6$Me$_6$ was used as an internal standard. 68% borane conversion to reduction product (MeOBO)$_3$.
Figure S25. 11B NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (1 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, RT, 48 h. 68% borane conversion to reduction product (MeOBO)$_3$.

Figure S26. 1H NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (0.1 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, 60 °C, 20 h. C$_6$Me$_6$ was used as an internal standard. 75 % borane conversion to reduction product (MeOBO)$_3$.
Figure S27. 11B NMR spectrum of the reduction of CO$_2$ by H$_3$B-SMe$_2$ catalyzed by [TBA][OAc] (0.1 mol% vs. BH$_3$-SMe$_2$). Conditions: C$_6$D$_6$, 60 °C, 20 h. C$_6$Me$_6$ was used as an internal standard. 75 % borane conversion to reduction product (MeOBO)$_3$.
NMR data for stoichiometric monitoring reactions: 1/1 [TBA][OAc]/pinB–H; 1/1/1 [TBA][OAc]/pinB–H/CO₂ (1.5 atm)

Figure S28. ¹H NMR spectrum (C₆D₆) of the stoichiometric reaction between [TBA][OAc] and HBpin after 1h at room temperature.

Figure S29. ¹¹B NMR spectrum (C₆D₆) of the stoichiometric reaction between [TBA][OAc] and HBpin (1 h, RT).
Figure S30. 13C NMR spectrum (C_6D_6) after the stoichiometric reaction between [TBA][OAc] and HBpin (1h, RT).

Figure S31. 1H NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO$_2$, consistent with the complete formation of the CO$_2$ insertion product [pinB(OAc)(O$_2$CH)]$^-$ (4).
Figure S32. 1H NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO$_2$, consistent with the complete formation of the CO$_2$ insertion product [pinB(OAc)(O$_2$CH)]$^-$ (4).

Figure S33. 13C NMR spectrum (C_6D_6) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO$_2$, consistent with the complete formation of the CO$_2$ insertion product [pinB(OAc)(O$_2$CH)]$^-$ (4).
Figure S34. 2D HSQC NMR spectrum (C$_6$D$_6$) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO$_2$, consistent with the complete formation of the CO$_2$ insertion product [pinB(OAc)(O$_2$CH)]$^+$ (4).

Figure S35. 2D HMBC NMR spectrum (C$_6$D$_6$) of the reaction mixture after exposing a 1/1 [TBA][OAc] and HBpin under 1.5 atm of CO$_2$, consistent with the complete formation of the CO$_2$ insertion product [pinB(OAc)(O$_2$CH)]$^+$ (4).
Figure S36. Molecular structure of **TS-1** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S37. Molecular structure of **TS-2** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)
Figure S38. Molecular structure of TS-3 as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S39. Molecular structure of TS-4 as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)
Figure S40. Molecular structure of **TS-5** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S41. Molecular structure of **TS-6** as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)
Figure S42. Molecular structure of TS-7 as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)

Figure S43. Molecular structure of TS-8 as estimated by DFT calculations (wB97xD/def2tzvpp//B3LYP/6-31G*)
Figure S44. DFT-estimated mechanism (wB97xD/def2tzvpp//B3LYP/6-31G*, benzene) of acetate-catalyzed CO$_2$ hydroboration to model A’ through the formation of acetate-bridged dinuclear boron model VI’. The values in parenthesis correspond to the energy barriers.