Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

The Role of Boron Sites in Side-chain Alkylation of Toluene with Methanol and a High Performance Composite Catalyst

Peidong Li⁺,^a Qiao Han⁺,^{a,b,c} Yangyang Yuan,^a Xiaomin Zhang,^a Hongchen Guo^c and Lei Xu^{*a}

^a National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^c Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals,

Dalian University of Technology, Dalian 116012, People's Republic of China.

⁺ These authors contributed equally to this work.

*E-mail addresses: <u>leixu@dicp.ac.cn</u>.

Fig. S1 SEM images of CsX, B/CsX, CsX-G and B/SiO₂-G and XB-G

Table S1 Details of the packing modes of CsX with B/SiO_2 or SiO_2

 Table S2 Preparation process of binary composite catalysts containing cesium oxide modified CsX and B/SiO2

 Table S3 Preparation process of ternary composite catalysts containing CsX, cesium oxide modified

 CsX and B/SiO2

Table S4 The acid and base amount of CsX, B/CsX, SiO₂ and B/SiO₂

Table S5 Reaction behaviors of side-chain alkylation of toluene with methanol over the composite catalyst systems containing CsX and B/SiO₂

 Table S6 Reaction behaviors of side-chain alkylation of toluene with methanol over the binary composite catalysts and ternary composite catalysts

Thermodynamics analysis

Thermodynamics equilibrium data were obtained by the following five reactions which involving methanol conversion and further conversion of the generated formaldehyde during side-chain alkylation of toluene with methanol process:

(a)
$$CH_3OH = CH_2O + H_2$$

(b)
$$CH_2O = CO + H_2$$

(c)
$$CH_2O + C_7H_8 = C_8H_8 + H_2O$$

- (d) $CH_3OH = CO + 2H_2$
- (e) $CH_3OH + C_7H_8 = C_8H_8 + H_2O + H_2$

The standard Gibbs free energy change $(\Delta_r G_m^{\theta}(T))$ of the above five reactions was calculated by the follow thermodynamic formula. The $\Delta_f H^{\theta}_{m,j}$ (298.15K), $S^{\theta}_{m,j}$ (298.15K), A, B, C and D were obtained from manual of thermodynamics.^{1,2}

$$\begin{split} \Delta_{f}H_{m,j}^{\theta}(T) &= \Delta_{f}H_{m,j}^{\theta}(298.15K) + \int_{298.15}^{T} C_{p,g,j}^{\theta}dT \\ S_{m,j}^{\theta}(T) &= S_{m,j}^{\theta}(298.15K) + \int_{298.15}^{T} C_{p,g,j}^{\theta}dlnT \\ C_{p,g}^{\theta} &= A + BT + CT^{2} + DT^{3} \\ \Delta_{r}G_{m}^{\theta}(T) &= \sum_{j} v_{j}\Delta_{f}H_{m,j}^{\theta}(T) - T\sum_{j} v_{j}S_{m,j}^{\theta}(T) \end{split}$$

SEM images

Fig. S1 SEM images of CsX, B/CsX, CsX-G, B/SiO₂-G and XB-G. G represents grinding in a mortar for 10 min.

The morphology of the catalysts was studied by SEM. As shown in Fig. S1, the particle sizes of CsX were about 2 μ m, and there were no obvious changes of it in morphologies and particle sizes after impregnating with boric acid. The CsX particles were slightly broken after grinding in a mortar. However, the particles of the separated grinding B/SiO₂ were irregular, and the size of the maximum particle was about 15 μ m, while some small particles were in nanometer scale. And the particles of B/SiO₂ and CsX mixed thoroughly after grinding together in a mortar (XB-G).

Catalysts*	Packing modes of CsX with B/SiO ₂ or SiO ₂
B-X	0.2 g B/SiO ₂ was loaded over 1 g CsX, and divided by quartz wool
X-B	0.2 g B/SiO_2 was loaded under 1 g CsX, and divided by quartz wool
X(-B-X) ₄	0.2 g CsX×5 and 0.05 g B/SiO ₂ ×4 were loaded alternately, and divided by quartz wool
XB-M	0.2 g B/SiO ₂ (20~40 mush) and 1 g CsX (20~40 mush) mixed by granule-stacking
XB-G	B/SiO ₂ and CsX (mass ratio 1:5) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh
XS-M	0.2 g SiO ₂ (20~40 mush) and 1 g CsX (20~40 mush) mixed by granule-stacking

Table S1 Details of the packing modes of CsX with B/SiO₂ or SiO₂

* X represents CsX, B represents B/SiO₂, S represents SiO₂, M represents granules mechanical mixing (20~40 mesh), G represents grinding in a mortar for 10 min

Table S2 Preparation process of binary composite catalysts containing cesium oxide modified CsX and B/SiO2.

Catalysts*	preparation process					
(4C)B-G	4CsOx/CsX and B ₂ O ₃ /SiO ₂ (mass ratio: 5:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh					
(8C)B-G	8CsOx/CsX and B ₂ O ₃ /SiO ₂ (mass ratio: 5:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh					
(16C)B-G	16CsOx/CsX and B ₂ O ₃ /SiO ₂ (mass ratio: 5:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh					

* 4C represents 4CsOx/CsX, 8C represents 8CsOx/CsX, 16C represents 16CsOx/CsX, B represents B/SiO₂, G represents grinding in a mortar.

Table S3 Preparation process of ternary composite catalysts containing CsX, cesium oxide modified CsX and B/SiO2

	-
Catalysts*	preparation process
X ₁ (8C)B-G	CsX, 8CsO _x /CsX and B/SiO ₂ (mass ratio: 2.5:2.5:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh
X ₃ (8C)B-G	CsX, 8CsO _x /CsX and B/SiO ₂ (mass ratio: 3.75:1.25:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh
X ₇ (8C)B-G	CsX, 8CsO _x /CsX and B/SiO ₂ (mass ratio: 4.375:0.625:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh
X ₃ (16C)B-G	CsX, 16CsO _x /CsX and B/SiO ₂ (mass ratio: 3.75:1.25:1) grinded in mortar for 10 min, then pressed, crushed and sieved to 20-40 mesh

* X represents CsX, 8C represents $8CsO_x/CsX$, 16C represents $16CsO_x/CsX$, B represents B/SiO_2 , G represents grinding in a mortar, subscript of X represents the mass ratio of CsX without any modification to cesium oxide modified CsX.

Table S4 The acid and base amount of CsX, B/CsX, SiO₂ and B/SiO₂*

Catalysts	CsX	B/CsX	SiO ₂	B/SiO ₂
Acid amount (µmol g ⁻¹)	58.9	67.3	_	171.2
Base amount (µmol g ⁻¹)	170.0	131.2	—	—

*The acid amount and base amount are calculated from the amount of NH_3 and CO_2 desorption on different catalysts in NH_3 -TPD and CO_2 -TPD.

 Table S5 Reaction behaviors of side-chain alkylation of toluene with methanol over the composite catalyst systems containing CsX and B/SiO2

Catalysts	SiO	B/SiO	CeX	ВV	V B	V(B V)	VR M	VB G	YS M	B/CeY
Reaction Index:	5102	B/3102	Съл	D-A	A-D	A(-D-A)4	AD-IVI	AD-O	A3-101	D/CSA
C _T (%)	0.02	0.14	2.11	2.27	2.29	2.82	2.75	2.35	2.18	2.64
C _M (%)	0.64	2.49	43.08	45.44	46.10	38.65	30.52	26.55	46.14	39.78
Y_{ST+EB} (mol%)	0.00	0.00	12.31	12.20	12.44	15.73	14.91	12.77	11.82	14.66
Y _{CO+CO2} (mol%)	0.30	0.38	25.24	22.66	23.51	13.98	6.54	5.01	25.05	16.83
ST/EB (mol/mol)	—	_	1.32	1.32	1.33	1.96	3.79	7.57	1.33	2.03
$S_{ST+EB/Aro} (mol\%)$	0.00	0.00	95.81	89.45	90.22	92.43	89.99	89.89	90.20	92.10
$Y_{ST\text{+}EB}\text{+}Y_{CO\text{+}CO2}$	0.30	0.38	37.55	34.86	35.95	29.71	21.45	17.77	36.86	31.49
$Y_{ST\text{+}EB}/Y_{CO\text{+}CO2}$	0.00	0.00	0.49	0.54	0.53	1.13	2.28	2.55	0.47	0.87
Carbon-containing p	roducts dis	stribution (n	nol%):							
СО	22.46	17.23	60.50	54.49	55.64	39.31	23.89	21.48	58.27	45.88
CO_2	33.88	4.63	1.95	1.23	1.16	1.07	0.60	0.60	1.27	0.93
CH_4	6.85	1.01	0.67	1.04	0.95	0.83	1.12	0.85	0.83	0.66
C ₂ -C ₅	0.00	27.80	0.15	1.92	2.25	2.27	2.58	2.64	1.87	2.01
Dimethyl ether	17.43	8.96	4.94	7.78	6.67	7.36	9.69	11.76	6.63	6.23
benzene	0.00	0.53	0.04	0.11	0.11	0.12	0.11	0.10	0.11	0.13
ethylbenzene	0.00	0.00	13.11	12.91	12.89	15.35	11.67	6.57	12.03	13.45
xylene	0.00	13.86	0.13	1.27	1.10	1.20	1.74	2.22	1.12	0.71
styrene	0.00	0.00	17.35	17.09	17.17	30.09	44.24	49.76	16.06	27.34
C_9^{+a}	19.37	26.04	1.16	2.16	2.05	2.41	4.37	4.00	1.82	2.66
Total	100	100	100	100	100	100	100	100	100	100

 $\overline{{}^{a} C_{9}^{+}}$: aromatics with nine or more carbon atoms;

Reaction conditions: 430 °C, TOS=50 min, toluene and methanol (molar ratio was 6:1) was fed at a total flow rate of 0.4 mmol/min with 10 mL/min helium.

Catalysts	CsX	8CsOx/ CsX	8CsOx/ B/CsX	(4C)B- G	(8C)B -G	(16C)B -G	X ₁ (8C) B-G	X ₃ (8C) B-G	X ₇ (8C) B-G	X ₃ (16 C)B-G
Reaction Index:										
C _T (%)	2.11	5.15	8.43	5.04	8.30	9.31	6.94	4.32	3.15	6.07
C _M (%)	43.08	98.52	96.40	44.73	80.60	99.37	63.33	42.24	31.77	56.16
$Y_{ST+EB} (mol\%)$	12.31	29.92	46.80	27.92	46.12	51.74	39.45	24.24	16.91	34.26
Y_{CO+CO2} (mol%)	25.24	63.90	42.89	9.80	27.94	41.01	18.51	10.95	7.62	16.90
ST/EB (mol/mol)	1.32	0.06	0.33	1.97	0.65	0.06	1.81	3.65	5.23	0.99
$S_{ST+EB/Aro} (mol\%)$	95.81	96.16	92.93	91.89	93.02	93.51	94.21	93.32	89.93	94.27
$Y_{ST\text{+}EB}\text{+}Y_{CO\text{+}CO2}$	37.55	93.83	89.69	37.72	74.06	92.75	57.96	35.19	24.54	51.16
$Y_{ST\text{+}EB}/Y_{CO\text{+}CO2}$	0.49	0.47	1.09	2.85	1.65	1.26	2.13	2.21	2.22	2.03
Carbon-containing p	roducts c	listribution	(mol%):							
СО	60.50	58.45	35.18	22.22	28.18	29.99	26.01	26.26	25.15	29.32
CO_2	1.95	8.09	10.11	1.09	6.92	11.58	3.97	1.22	0.81	1.35
CH_4	0.67	0.74	0.55	0.48	1.17	1.43	0.51	0.82	0.81	0.47
C2-C5	0.15	0.14	0.86	2.05	1.22	0.78	1.09	2.11	2.86	1.84
dimethyl ether	4.94	0.17	0.14	1.89	0.21	0.15	0.64	4.53	6.28	1.03
benzene	0.04	0.06	0.12	0.15	0.09	0.10	0.10	0.10	0.12	0.10
ethylbenzene	13.11	29.40	37.17	22.33	35.12	49.46	22.77	13.08	9.24	31.22
xylene	0.13	0.07	0.23	0.38	0.29	0.26	0.32	0.95	1.46	0.62
styrene	17.35	1.76	12.24	44.07	22.82	2.97	41.10	47.77	48.38	30.99
C_9^{+a}	1.16	1.11	3.41	5.33	3.96	3.29	3.51	3.31	4.87	3.07
Total	100	100	100	100	100	100	100	100	100	100

 Table S6 Reaction behaviors of side-chain alkylation of toluene with methanol over the binary composite catalysts and ternary composite catalysts

 $\overline{^{a} C_{9}^{+}}$: aromatics with nine or more carbon atoms;

Reaction conditions: 430 °C, TOS=50 min, toluene and methanol (molar ratio was 6:1) was fed at a total flow rate of 0.4 mmol/min with 10 mL/min helium.

References

1 P. Ma, S. Xia, Q. Xia, Concise manual of chemical property data (in Chinese), *Chemical industry press*, Beijing, 2013. ISBN: 978-7-122-16381-3.

2 J. Shi, J. Wang, G. Yu, M. Chen, Chemical engineering handbook (in Chinese), second ed., Chemical Industry Press, Beijing, 1996. ISBN: 7-5025-1474-0.