Ru nanoparticles supported on amorphous ZrO$_2$ for CO$_2$ methanation

Hironori Nagase a, Rei Naito a, Shohei Tada b, Ryuji Kikuchi a,*, Kakeru Fujiwara c, Masahiko Nishijima d, Tetsuo Honma e

a Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

b Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan.

c Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

d The Electron Microscopy Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

e Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

S1 Stoichiometry of Ru to CO

Fig. S1a shows the TEM image of Ru/SiO$_2$ prepared by the SD_NaOH method. Several darker spots can be observed and attributed to Ru nanoparticles. The average size of Ru nanoparticles was 9.0 ± 2.8 nm according to the particle size distribution (Fig. S1b). Furthermore, CO chemisorption measurement was also conducted for the catalyst. The CO uptake was 40 μmol g$^{-1}$. If the stoichiometry of CO to Ru (n in Eq. 3) is 0.93, the Ru size estimated from TEM is equal to that calculated from CO chemisorption.
Fig. S1 (a) TEM image of Ru/SiO$_2$. (b) Particle size distribution of Ru.

Fig. S2 Particle size distributions of Ru nanoparticles for (a) Ru/am-ZrO$_2$ (Imp), (b) Ru/am-ZrO$_2$ (SD$_{\text{NaOH}}$), (c) Ru/am-ZrO$_2$ (SD$_{\text{NH}_3}$), and (d) Ru/cr-ZrO$_2$ (SD$_{\text{NaOH}}$).
Fig. S3 TEM image in a yellow rectangle of Fig. 6 (b). Several black dots with the size < 5 nm are observed, indicated by arrows.

Fig. S4 FTIR spectra over (a) Ru/am-ZrO$_2$ (SD_NH$_3$), (b) Ru/am-ZrO$_2$ (SD_NaOH), and (c) Ru/cr-ZrO$_2$ (SD_NaOH) during desorption of CO$_2$-derived species at 250 °C for 40 min.