Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information of

Heterogenization for polyoxometalates as solid catalysts in aerobic oxidation of glycerol

Meilin Tao^{a,b}, Yue Li^a, Yiming Li^a, Xueyan Zhang^a, Yurii V Geletii^b, Xiaohong Wang^{a,*}, Craig L

Hill^{b,*}

 ^a Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China, E-mail: wangxh665@nenu.edu.cn, Fax: 0086-431-85099759
 ^b Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States

Experimental

Materials and reagents: All the chemicals were of AR grade, which were obtained commercially and used without further purification.

Instruments: Elemental analysis was carried out using a Leeman Plasma Spec (I) ICP-ES. IR spectroscopy (4000-500 cm⁻¹) was recorded in KBr discs on a Nicolet Magna 560 IR spectrometer. X-ray diffraction (XRD) patterns of the sample were collected on a Japan Rigaku Dmax 2000 X-ray diffractometer with Cu K α radiation (λ = 0.154178 nm). The measurements were obtained in the step of 0.04° with account time of 0.5 s and in the 20 rang of 5-90 °. SEM micrographs were recorded on a scan electron microscope (XL30 ESEM FEG 25kV). EDX spectra were obtained using 20 kV primary electron voltages to determine the composition of the samples. The redox potentials were measured by cyclic voltammetry (CV) on a CS Corrtest electrochemical workstation equipped with graphite powder (SP) and liquid paraffin (4:1) as electrodes and saturated calomel as reference electrode. Electrochemical measurements were performed in 0.1 M sulfuric acid solution. The ³¹P MAS NMR spectra were obtained using a Bruker AM500 spectrometer at 202.5 MHz. The Lewis acidity was measured by IR spectra of adsorbed pyridine (Py-IR). The samples were exposed to the pyridine vapor for 12 h under vacuum (10⁻³ Pa) at 60 °C before testing. The quantification of acidity was calculated by Lambert-Beer equation:

Where A is the absorbance (area in cm⁻¹), ε is the extinction coefficient (m²/mol), w is the sample weight (kg), c is the concentration of acid (mol/kg or mmol/g), and s is the sample disk area (m²), respectively. The amount of L acid sites was estimated from the integrated area of the

adsorption bands at 1456 cm⁻¹, respectively, using the extinction coefficient values based on the previous report [1].

Fig. S1. TG and DTA of AlPMo₁₂ (left) HPMo₁₁Al (right).

Fig. S2. N₂ sorption isotherms and the pore size distribution of AlPMo₁₂-orig, AlPMo₁₂-250,

AlPMo₁₂-400, HPMo₁₁Al-orig, HPMo₁₁Al-250, HPMo₁₁Al-450.

Fig. S3. SEM image of AlPMo₁₂-400.

Fig. S4. TGA of LPMo₁₂ and HPMo₁₁L catalysts. The POMs lose their crystallization water at around 250 °C. The data are consistent with the presence of 13 molecules of H₂O per LPMo₁₂, and 10 per HPMo₁₁L before 300 °C.

Fig. S5. FTIR spectra of homogeneous LPMo₁₂ and HPMo₁₁L.

Fig. S7. ³¹P MAS NMR spectra of homogeneous HPMo₁₁L.

Fig. S8. (A) FTIR spectra of heterogeneous LPMo₁₂ catalysts, which exhibited four characteristic peaks at about 1057 cm⁻¹ (vas P-O), 958 cm⁻¹ (vas Mo=O), 873 cm⁻¹ (vas Mo-O-Mo), and 740 cm⁻¹ (vas Mo-O-Mo), red shifted with respect to parent H₃PMo₁₂O₄₀ (1060, 965, 882 and 748 cm⁻¹).

(B) FTIR spectra of heterogeneous HPMo₁₁L, which showed bands at 1051, 1038 (shoulder) (v (P-O)), 953 (v (Mo=O), terminal), 860 (v (Mo-O-L), corner-sharing octahedra), and 774 cm⁻¹ (v (Mo-O-L), edge-sharing octahedra) characteristic of the α-Keggin structure similar to their parent H₃PMo₁₂O₄₀. The splitting of v (P-O) band resulted from the decrease in the symmetry of PO₄ tetrahedron being caused by the L substitution for Mo in the PMo₁₂O₄₀³⁻ framework [2].

Fig. S9. XRD patterns of LPMo₁₂ (A) and HPMo₁₁L (B). Compared with H₃PMo₁₂O₄₀ (10.35, 14.60, 17.85, 20.68, 23.11, 25.44, 31.22, and 34.67 °), some shifts appeared because of the replacement of proton in LPMo₁₂ and Mo in HPMo₁₁L by metal ions, which confirmed the successful synthesis of LPMo₁₂ and HPMo₁₁L.

Fig. S10. ³¹P MAS NMR spectra of heterogeneous LPMo₁₂ catalysts. Their peaks at about -5.22 ppm with some shifts compared to $H_3PMo_{12}O_{40}$ at -5.43 ppm.

Fig. S11. ³¹P MAS NMR spectra of heterogeneous HPMo₁₁L catalysts. They all presented one major peak around -5.80 ppm, which was assigned to $PMo_{11}L^{n-}$ [3,4], some shifts occurred as the monosubstituted metal changed, which indicated that metal atoms were successfully inserted into vacancy of $[PMo_{11}O_{39}]^{7-}$ to form saturated POMs. No signals were observed for HPMoFe because of the presence of P-O-Fe³⁺ (paramagnetic species) bond in the polyoxometalate structure in

agreement with the literature [5].

Fig. S12. FTIR spectra of pyridine adsorption of LPMo₁₂ (a) and HPMo₁₁L catalysts (b). The Lewis acidity defined by molar number of pyridine absorbed by LPMo₁₂, which was measured by FT-IR spectroscopy. All the samples of LPMo₁₂ have typical bands corresponding to strong Lewis acid bound pyridine, at around 1450 and 1610 cm⁻¹ [2]. The concentrations of Lewis acid sites were calculated from the bands at 1456 cm⁻¹ based on Lambert-Beer equation [1].

Fig. S13. FTIR spectra of $LPMo_{12}$ and $HPMo_{11}L$ catalysts after reaction.

-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 -100 -80 -60 -40 -20 0 20 40 60 80 100

Fig. S14. ³¹P MAS NMR of LPMo₁₂ catalysts after reaction.

Fig. S15. ³¹P NMR of HPMo₁₁L catalysts after reaction.

Fig. S16. XRD of LPMo $_{12}$ and HPMo $_{11}L$ catalysts after reaction

Fig S17. Leaching experiment of heterogeneous catalyst: AlPMo₁₂ (A) and HPMo₁₁Al (B). Reaction conditions: 5 mL of 1.0 M glycerol, 4.0 mM catalyst, 60 °C, 1 MPa O₂, 5 h, 800 rpm.

Scheme S1. The formation mode of mesopores and micropores.

Scheme S2. The mechanism of Al³⁺ catalytic isomerization of GCA to DHA

Table S1 Summarize of glycerol oxidation

Cat.	Oxident	Conditions	CON. %	Sel. %	Ref.
Pt-Bi/charcoal	air	50 °C, 4 h	80	DHA (80)	6
Au/charcoal	O_2	60 °C, 3 h	56	GlyA (100)	7
Pt/Chloride	air	30 °C, 8 h	80	GlyA (56.9)	8
Bi–Pt/C	air	60 °C, 5 h	75	DHA (50)	9
1% Pt/C	O_2	50 °C, 4 h	81.6	GlyA (50)	10
Au-Pt/C	O_2	60°C, 1.5h	50	DHA (72)	11
5%Pt/C	Air	60 °C, 21 h	60	GlyA (48)	12
1% Au/C	O_2	30 °C, 20h	100	GlyA (92)	13
5%Pt-5%Bi/C	O_2	60°C, 6h	91.5	DHA (49)	14
Pd-on-Au/C	O_2	60 °C, 3h	98	GlyA (43)	15
AuPd/C	O_2	60 °C, 5h	50	GlyA (84)	16
CuAlMg/C	O_2	60 °C, 3h	97.3	GlyA (70)	17
Pt-Cu/C	O_2	60 °C, 6h	86.2	GlyA (70.8)	18
Pt/C	O_2	60 °C, 6h	50	GlyA (47.4)	19
Pt/C	O_2	6h	20.4	GlyA (45)	20
Pt-Bi/C	O_2	70 °C, 8h	80	DHA (48)	21
Pd/graphite	O_2	50 °C, 1 h	90	GlyA (62)	22
Pt/MCN	O_2	60 °C, 4h	63.1	GlyA (58.5)	23
Pt/CNTs	O_2	60°C, 9h	63	GlyA (37.6)	24
PVA/Au	H_2O_2	50 ∘C	60.7	GCA (54.5)	25
Pt/ZrO ₂	He	180 °C, 24h	95	LA (84)	26
AuPt/MCM-41	O_2	80°C, 0.25h	30	GCA (46)	27
Pt/AC _{PO}	O_2	60 °C, 6h	55	GlyA (35.3)	28
Pt/TiO ₂	O_2	90 °C, 2h	10	GCA (67.2)	29
Pt-PVP+TiO ₂	O_2	150°C, 18h	100	LA (63)	30
Ru-Zn-Cu ^I /HAP	O_2	140 °C, 12h	100	LA (82.7)	31
Pt/Sn-MFI	O_2	100 °C, 24h	89.8	LA (80.5)	32
Pt NPs/HT	O_2	60 °C, 6h	80	GlyA (40)	33
10% Ni/ γ -Al ₂ O ₃	$5\%H_2$	300 °C, 6 h	50	CH ₄ (100)	34
Ti–Si co-gel	H_2O_2	80 °C, 24 h	22	GCA (37)	35
CuO/ZrO ₂	\mathbf{N}_2	180 °C, 8h	100	LA (94.6)	36
Au/MgO-Al ₂ O ₃	O_2	80°C, 0.5h	16.4	DHA (74)	37
LDH[Cr (SO ₃ salen)]	H_2O_2	60°C, 4h	71.3	DHA (43.5)	38
Urea-Gluconobacter		30 °C, 6h	84.8	DHA (96.4)	39
$H_4PV_1Mo_{11}O_{40}\\$	O_2	150°C, 3h	90.6	FA (41.2)	40
[LMn (u-O) $_{3}MnL]_{2}[SiW_{12}O_{40}]$	H_2O_2	22°C, 24h	40	DHA (15.3)	41

Cat.	Reactions	Ref
$Cs_{2.2}H_{0.8}PW_{12}O_{40}$	decomposition of ester, dehydration of alcohol, and alkylation of aromatics	42
$Cs_3PW_{12}O_{40}$	conversions of cellobiose and cellulose into sorbitol in water	43
$Ag_3PW_{12}O_{40}$	intermolecular hydroamination of olefins	44
$K_{2.2}H_{0.8}PW_{12}O_{40}\\$	esterification of 2-keto-L-gulonic acid	45
$(NH_4)_3PW_{12}O_{40}$	intermolecular hydroamination of olefins	44
$Sn_x[H_{3-2x}PW_{12}O_{40}]$	benzylation of arenes with benzyl alcohol	46
$Zn_{1.2}H_{0.6}PW_{12}O_{40}$	esterification of palmitic acid and transesterification of waste cooking oil	47
$BiPW_{12}O_{40}$	esterification of oleic acid with n-butanol	48
H ₃ PW ₁₂ O ₄₀ /SBA-15	acid-base tandem reaction	49
H4SiMo12O40/Mesoporous silica hollow sphere	Friedel-Crafts alkylation	50
Na7H2LaW10O36/ IL-modified SiO2	oxidative desulfurization	51
H ₃ PW ₁₂ O ₄₀ /MIL-101(Cr)	carbohydrate dehydration to HMF	52
[CuPW ₁₁ O ₃₉] ^{5-/} HKUST-1	detoxification of various sulfur compounds	53
PMo ₁₀ V ₂ O ₄₀ ⁵⁻ /PIL poly(VMCA)	esterification reactions	54
$\begin{array}{c} H_{3}PMo_{12}O_{40} \ (PMA) / \ Mesoporous \\ Cr_{2}O_{3} \end{array}$	oxidation of 1-phenylethanol with H_2O_2	55
K _{12.5} Na _{1.5} [NaP ₅ W ₃₀ O ₁₁₀]/RGO	electrolytic water oxidation	56
d/POMs/NHCSs	electrochemical induction with paracetamol	57
SiPMo12/MWCNTs	supercapacitor	58
PMo ₁₂ @g-C ₃ N ₄ , PW ₁₂ @g-C ₃ N ₄	photocatalytic degradation of methylene blue and phenol	59
AC@PMo ₁₂	supercapacitor	60
FAD-GDH/P2M018/PMA/MWCNTs	glucose biosensor	61
POMOFs/RGO	lithium ion battery	62

 Table S2 Immobilization of POMs and their heterogeneous catalytic studies in different organic transformations

Catalyata	Lewis acidity,	Elementary results (calculated values in parenthesis)/wt%					
Catalysis	mmol/g	Р	Мо	L			
HPMo ₁₂	0	1.62(1.69)	63.23(63.08)	-			
AlPMo ₁₂	0.60	1.57(1.62)	60.44(60.04)	4.78(4.97)			
FePMo ₁₂	0.48	1.59(1.65)	62.36(61.30)	2.95(2.97)			
CrPMo ₁₂	0.42	1.59(1.65)	61.67(61.43)	2.74(2.77)			
TiPMo ₁₂	0.40	1.62(1.67)	62.61(61.96)	2.04(1.93)			
ZnPMo ₁₂	0.25	1.58(1.61)	60.75(59.95)	5.23(5.11)			
ZrPMo ₁₂	0.19	1.61(1.64)	61.03(60.89)	3.56(3.62)			

Table S3 The Lewis acidity and elementary analysis of $LPMo_{12}$

		j					
Catalyst	Lauria agiditu	Elementary results (calculated values in					
	Lewis actually,		parenthesis)/wt%				
	mmoi/g	Р	Мо	Μ			
HPMo ₁₂	0.03	1.52(1.60)	64.03(63.08)	-			
HPMo ₁₁ Al	0.52	1.74(1.78)	61.10(60.61)	1.43(1.55)			
HPMo ₁₁ Fe	0.48	1.69(1.75)	60.00(59.62)	3.04(3.15)			
HPMo ₁₁ Ti	0.39	1.71(1.74)	60.01(59.32)	2.65(2.69)			
HPMo ₁₁ Cr	0.28	1.69(1.75)	60.04(59.75)	2.90(2.94)			
HPMo ₁₁ Zn	0.15	1.70(1.74)	59.02(59.26)	3.62(3.67)			

Table S4 The elementary analysis of HPMo₁₁L

It showed that the molar ratios of P: Mo is 1:11, respectively. This indicated that the keggin structure for $HPMo_{11}L$ did not destroy during the introduction of Lewis metals. For $HPMo_{11}L$, the molar ratio of L: Mo as 1: 11 confirmed the formation of mono-substituted molybdophosphoric acid.

Enters	Catalwata	SSA,		yields, %					
Entry Catalysis	m²/g	CON, %	DHA	GCA	GlyA	PRA	LA	AcA	
1	AlPMo ₁₂	12.0	93.7	2.1	1.0	3.1	1.2	84.8	3.1
2	FePMo ₁₂	11.5	90.0	3.2	3.2	2.0	1.3	80.2	1.2
3	CrPMo ₁₂	11.0	88.2	4.0	5.3	2.2	1.4	73.1	1.1
4	TiPMo ₁₂	7.5	77.0	6.3	5.1	5.1	2.0	56.0	0
5	ZrPMo ₁₂	7.2	48.4	8.1	7.0	5.1	3.1	19.2	0
6	ZnPMo ₁₂	6.3	30.1	9.0	8.2	0	3.2	10.3	0

Table S5. Oxidation of glycerol in the presence of $LPMo_{12}$ catalysts

Reaction conditions: 5 mL of 1.0 M glycerol, 4.0 mM catalyst, 60 $^{\circ}\text{C},$ 1 MPa O_2, 5 h, 800 rpm.

Enter Catalant		SSA	CON		Yields, %					
Entry Catalyst	m²/g	%	DHA	GCA	GlyA	PRA	LA	AcA		
1	HPMo ₁₁ Al	20.1	78.1	11.2	26.1	4.2	2.1	55.0	2.1	
2	HPMo ₁₁ Fe	19.6	68.2	14.3	32.3	3.1	4.2	46.2	1.0	
3	HPMo ₁₁ Ti	19.2	50.1	20.1	39.0	4.3	5.0	32.3	0	
4	HPMo ₁₁ Cr	19.4	31.0	25.1	50.2	0	9.3	16.2	0	
5	HPMo ₁₁ Zn	18.9	16.2	26.0	59.1	0	6.0	9.1	0	

Table S6. Oxidation of glycerol in the presence of $HPMo_{11}L$ catalysts

Reaction conditions: 1 M glycerol, 4 mM catalyst, 60 °C, 5 h, 1 MPa O₂, 800 rpm.

Table S7 The acidity mesurement of LPMo₁₂

Catalysts	Lewis acidity (mmol/g)	Brønsted acidity (mmol/g)	B / L
AlPMo ₁₂	0.60	0.05	0.1
$Al_{0.67}PMo_{12} \\$	0.42	0.33	0.8
$Al_{0.33}PMo_{12}$	0.25	0.65	2.6
FePMo ₁₂	0.48	0.04	0.1
$Fe_{0.67}PMo_{12}$	0.34	0.31	0.9
Fe _{0.33} PMo ₁₂	0.18	0.63	3.5

Reference

[1] C. A. Emeis, J Catal. 1993, 141, 347-354.

[2] V. L. Budarin, J. H. Clark, R. Luque, D. J. Macquarrie, A. Koutinas and C. Webb, Green Chem. 2007, 9, 992-995.

[3] N. Dimitratos, J. C. Vedrine, J Mole Catal A: Chem. 2006, 255, 184-192.

[4] H. Zhang, T. Wang, X. Ma, W. Zhu, Catalysts 2016, 6, 187-199.

[5] C. R. Deltcheff, R. Thouvenot, R. Frank, Spectrochim. Acta A. 1976, 32, 587-597.

[6] H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Appl Catal A: Gen. 1993, 96, 217-228.

[7] S. Carrettin, P. Mcmorn, P. Johnston, K. Griffin, G. J. Hutchings. Chem Commun. 2002, 7, 696-697.

[8] M. S. Gross, B. S. Sanchez, C. A. Querini. Appl Catal A: Gen. 2015, 501, 1-9.

[9] R. Garcia, M. Besson, P. Gallezot, Appl Catal A: Gen. 1995, 127, 165-176.

- [10] N. Dimitratos, C. Messi, F. Porta, L. Prati, A. Villa, J Mol Catal A: Chem. 2006, 256, 21-28.
- [11] S. Demirel, K. Lehnert, M. Lucas, P. Claus, Appl Catal B: Environ. 2007, 70, 637-643.

[12] S. Carrettin, P. Mcmorn, P. Johnston, K. Griffin, C. J. Kiely, G. J. Hutchings, Phys Chem Chem Phys. 2003, 5, 1329-1336.

[13] F. Porta, L. Prati, J Catal. 2004, 224, 397-403.

[14] D. Liang, S. Cui, J. Gao, J. Wang, P. Chen, Z. Hou, Chin J Catal. 2011, 32, 1831-1837.

[15] Z. Zhao, J. Arentz, L. A. Pretzer, P. Limpornpipat, J. M. Clomburg, R. Gonzalez, N. M.

Schweitzer, T. Wu, J. T. Miller, M. S. Wong, Chem Sci. 2014, 5, 3715-3728.

[16] W. C. Ketchie, M. Murayama, R. J. Davis, J Catal. 2007, 250, 264-273.

[17] C. H. Zhou, J. N. Beltramini, C. X. Lin, Z. P. Xu, G. Q. Lu, A. Tanksale, Catal Sci Technol. 2011, 1, 111-122.

[18] D. Liang, J. Gao, J. Wang, P. Chen, Y. Wei, Z. Hou, Catal Commun. 2011, 12, 1059-1062.

[19] D. Liang, J. Gao, J. Wang, P. Chen, Z. Hou, X. Zheng, Catal Commun. 2009, 10, 1586-1590.

[20] Z. Zhang, L. Xin, W. Li, Appl Catal B: Environ. 2012, 119-120, 40-48.

[21] W, Hu, D, Knight, B. Lowry, A. Varma, Ind Eng Chem Res. 2010, 49, 10876-10882.

[22] N. Dimitratos, F. Porta, L. Prati, Appl Catal A: Gen. 2005, 291, 210-214.

[23] F. F. Wang, S. Shao, C. L. Liu, Chml Eng J. 2015, 264, 336-343.

[24] J. Lei, X. Duan, G. Qian, X. Zhou, D. Chen, Ind Eng Chem Res. 2014, 53, 16309-16315.

[25] C. A. Nunes, M. C. Guerreiro, J Mol Catal A: Chem. 2013, 370, 145-151.

[26] J. Ftouni, N. Villandier, F. Auneau, M. Besson, L. Djakovitch, C. Pinel, Catal Today. 2015, 257, 267-273.

- [27] A. Villa, S. Campisi, K. M. H. Mohammed, N. Dimitratos, F. Vindigni, M. Manzoli, W. Jones, M. Bowker, G. J. Hutchings, L. Prati, Catal Sci Technol. 2015, 5, 1126-1132.
- [28] J. Lei, H. Dong, X. Duan, W. Chen, G. Qian, D. Chen, X. Zhou, Ind. Eng. Chem. Res. 2016, 55, 420-427.

[29] Y. Shen, Y. Li, H. Liu, J Energy Chem. 2015, 24, 669-673.

[30] T. Komanoya, A. Suzuki, K. Nakajima, M. Kitano, K. Kamata, M. Hara, ChemCatChem. 2016, 8, 1094-1099.

[31] Z. Jiang, Z. Zhang, T. Wu, P. Zhang, J. Song, C. Xie, B. Han, Chem Asian J. 2017, 12, 1598-1604.

[32] H. J. Cho, C. C. Chang, W. Fan, Green Chem. 2014, 16, 3428-3433.

[33] D. Tongsakul, S. Nishimura, C. Thammacharoen, S. Ekgasit, K. Ebitani, Ind Eng Chem Res. 2012, 51, 16182-16187.

[34] B. C. Miranda, R. J. Chimentão, J. B. O. Santos, F. Gispert-Guirado, J. Llorca, F. Medina, F. L. Bonillo, J. E. Sueiras, Appl Catal A: Gen. 2014, 147, 464-480.

[35] P. McMorn, G. Roberts, G. J. Hutchings, Catal Lett. 1999, 63, 193-197.

[36] G. Y. Yang, Y. H. Ke, H. F. Ren, C. L. Liu, R. Z. Yang, W. S. Dong, Chem Eng J. 2016, 283, 759-767.

[37] Z. Yuan, Z. Gao, B. Q. Xu, Chin J Catal. 2015, 36, 1543-1551.

[38] X. Wang, G. Wu, F. Wang, K. Ding, F. Zhang, X. Liu, Y. Xue, Catal Commun. 2012, 28, 73-76.

[39] Z. C. Hu, S. Y. Tian, L. J. Ruan, Bioresource Technol. 2017, 233, 144-149.

[40] J. Zhang, M. Sun, Y. Han RSC Adv. 2014, 4: 35463-35466.

[41] G. B. Shul'pin, Y. N. Kozlov, L.S. Shul'pina, T. V. Strelkova, D. Mandelli, Catal Lett. 2010, 138, 193-204.

[42] O. Toshio, N. Toru, M. Makoto. Chem Lett. 1995, 24, 155-156.

[43] W. Shi, J. Zhao, X. Yuan, S. Wang, X. Wang, M. Huo, Chem Eng Technol. 2012, 35, 347-352.

[44] L. Yang, L. W. Xu, C. G. Xia. Tetrahedron Lett. 2008, 49, 2882-2885.

[45] T. H. T. Vu, H. T. Au, T. M. T. Nguyen, M. T. Pham, T. T. Bach, H. N. Nong, Catal Sci Technol. 2013, 3, 699-705.

[46] C. R. Kumar, K. T. V. Rao, P. S. S. Prasad, N. Lingaiah, J Mol Catal A: Chem. 2011, 337, 17-24.

[47] J. Li, X. Wang, W. Zhu, F. Cao, ChemSusChem. 2009, 2, 177-183.

[48] J. Wang, G. Luo, C. Liu, J. Lai, Energy Sources Part A. 2014, 36, 479-488.

[49] K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Angew Chem Int Ed. 2007, 46,

7625-7628.

- [50] J. Dou, H. C. Zeng, J Am Chem Soc. 2012, 134, 16235-16246.
- [51] Y. Chen, Y. Song, ChemPlusChem. 2014, 79, 304-309.
- [52] Y. Zhang, V. Degirmenci, C. Li, E. J. M. Hensen, ChemSusChem. 2011, 4, 59-64.
- [53] J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hardcastle, C. L. Hill, J Am
- Chem Soc. 2011, 133, 16839-16846.
- [54] Y. Leng, P. Jiang, J. Wang, Catal Commun. 2012, 25, 41-44.
- [55] F. Su, L. Ma, Y. Guo, W. Li, Catal Sci Technol. 2012, 2, 2367-2374.
- [56] M. Jiang, D. Zhu, J. Cai, H. Zhang, X. Zhao, J Phys Chem C. 2014, 118, 14371-14378.
- [57] L. Wang, T. Meng, J. Sun, S. Wu, M. Zhang, H. Wang, Y. Zhang, Anal Chim Acta. 2019, 1047, 28-35.
- [58] T. Akter, K. Hu, K. Lian. Electrochim Acta. 2011, 56, 4966-4971.
- [59] J. He, H. Sun, S. Indrawirawan, X. Duan, M. O. Tade, S. Wang, J Colloid Interface Sci. 2015, 456, 15-21.
- [60] C. Hu, E. Zhao, N. Nitta, A. Magasinski, G. Berdichevsky, G. Yushin, J Power Sources. 2016, 326, 56-74.
- [61] F. Boussema, A. J. Gross, F. Hmida, B. Ayed, H. Majdoub, S, Cosnier, A. Maaref, M.
- Holzinger, Biosens, Bioelectron. 2018, 109, 20-26.
- [62] T. Wei, M. Zhang, P. Wu, Y. J. Tang, S. L. Li, F. C. Shen, X. L. Wang, X, P. Zhou, Y. Q. Lan, Nano Energy. 2017, 34, 205-214.