Electronic Supplementary Information (ESI)†

A Nitrogen-Doped Carbon Coated Silicon Carbide as a Robust and Highly Efficient Metal-Free Catalyst for Sour Gases Desulfurization in the Presence of Aromatics as Contaminants

Cuong Duong-Viet, ^{a,b} Jean-Mario Nhut, ^a Tri Truong-Huu, ^c Giulia Tuci, ^d Lam Nguyen-Dinh, ^c Yuefeng Liu,^e* Charlotte Pham,^f Giuliano Giambastiani, ^{a,d,g}* Cuong Pham-Huu ^a*

- ^a Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France. E-mail: <u>cuong.phamhuu@unistra.fr</u> and <u>giambastiani@unistra.fr</u>
- ^b Ha-Noi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem, Ha-Noi, Vietnam
- ^c The University of Da-Nang, University of Science and Technology, 54, Nguyen Luong Bang, Da-Nang, Vietnam
- ^d Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 – 50019, Sesto F.no, Florence, Italy. E-mail: giuliano.giambastiani@iccom.cnr.it
- ^e Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, 116023 Dalian, China. E-mail: <u>yuefeng.liu@dicp.ac.cn</u>
- ^{*f*} SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
- ^g Kazan Federal University, 420008 Kazan, Russian Federation

Fig. S1[†] Digital photos of the β -SiC produced through a gas-solid process with different size and shape: ring, pellets with different diameters (<u>www.sicatcatalyst.com</u>).

Fig. S2[†] XRD patterns of Fe₂O₃/SiO₂ catalyst (Fe 2.6 wt.%).

Fig. S3[†] Schematic illustration of a desulfurization apparatus for testing N-C/SiC as catalyst with or without toluene as contaminant.

Table S1^{\dagger} Selected physico-chemical properties of N-C/SiC and Fe₂O₃/SiO₂ composites along with their pristine supports.

Entry	Sample	N-C wt.% (from TGA)	N wt.% (from EA) ^a	SSA (m ² g ⁻¹)	Nitrogen species (%) ^b			
					Pyridinic	Pyrrolic	Graphitic	Oxidized
1	SiC	-	-	25	-	-	-	-
2	N-C/SiC	7.4	1.7	57	53.1	13.1	26.8	7.0
3	SiO ₂	-	-	165	_	_	_	-
4	Fe ₂ O ₃ /SiO ₂	-	-	160	-	-	-	-

^a Elemental analysis: average values calculated over three independent runs over each sample. ^b Estimated from high resolution XPS N1s core region recorded on N-C/SiC and its relative peak deconvolution.

Fig. S4[†] (**A**) N₂ adsorption-desorption isotherm linear plot (BET) of SiC and N-C/SiC samples (red curves, empty vs. full dots) recorded at 77 K. (**A'**) Pore-size distribution measured (BJH method) for SiC and N-C/SiC samples (red curves, empty *vs.* full squares). (**B**) N₂ adsorption-desorption isotherm linear plot (BET) of SiO₂ and Fe₂O₃/SiO₂ samples (blue curves, empty vs. full dots) recorded at 77 K. (**B'**) Pore-size distribution measured (BJH method) for SiO₂ and Fe₂O₃/SiO₂ samples (blue curves, empty vs. full dots) recorded at 77 K. (**B'**) Pore-size distribution measured (BJH method) for SiO₂ and Fe₂O₃/SiO₂ samples (blue curves, empty *vs.* full squares).

Figure S5[†] (left) XPS survey spectrum of N-C/SiC. (right) XPS C 1s core region of N-C/SiC along with the relative curve fitting.

Figure S6[†] (A-C) Compositional elemental mapping of N-C/SiC by STEM-EELS analysis with mapping of Si-K, C-K and N-K ionization edges. N-K indicates a homogeneously distribution of the heteroelement at the outer catalyst surface.

Figure S7[†] Desulfurization performance on N-C/SiC catalyst in the presence of variable toluene concentrations in the reactants stream {[tol] = 1000 ppm (0.1 vol.%), blue symbols; [tol] = 5000 ppm (0.5 vol.%), red symbols; [tol] = 10000 ppm (1 vol.%), green symbols}. Reaction details common to all runs: N-C/SiC = 6 g (V_{cat} ~ 7.5 cm³); [H₂S] = 1 vol.%; O₂-to-H₂S ratio = 2.5, [H₂O] = 30 vol.%, He (balance); reaction temperature = 210 °C, GHSV (STP) = 2400 h⁻¹.

Figure S8[†] SEM image of freshly prepared N-C/SiC catalysts along with its EDS - X-ray microanalysis.