Electronica Supplementary Material (ESM)

Discussing the performance of beta zeolites in aqueous-phase valorization of xylose

Tiago L. Coelho, Bruna Marinho, Elise M. Albuquerque, Marco A. Fraga*

Instituto Nacional de Tecnologia/MCTIC, Divisão de Catálise e Processos Químicos, Av. Venezuela, 82, sala 518, 20081-312 Rio de Janeiro – RJ –Brazil

*Corresponding author. E-mail address: marco.fraga@int.gov.br
Fig. SM1. FTIR of hydrated SiAl12 catalyst under different time of evacuation (from 0 to 240 min).
Figure SM2. X-ray diffractograms of fresh zeolites SiAl8, SiAl12 and SiAl19.
Figure SM3. 29Si NMR spectra for SiAl8 and SiAl12 zeolites. (a) experimental and deconvoluted spectra for (b) SiAl8 and (c) SiAl12.
Figure SM4. 27Al NMR spectra for fresh zeolites.
Figure SM5. 27Al NMR spectra for SiAl8, SiAl12 and SiAl19 dehydrated zeolites.
Table SM1. Concentration of Brønsted and Lewis acid sites calculated by IR of adsorbed pyridine for dehydrated zeolites.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Brønsted acid sites (µmol g⁻¹)</th>
<th>Lewis acid sites (µmol g⁻¹)</th>
<th>Lewis /Brønsted</th>
<th>Total acid sites (µmol g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiAl8</td>
<td>340</td>
<td>600</td>
<td>1.76</td>
<td>940</td>
</tr>
<tr>
<td>SiAl12</td>
<td>230</td>
<td>285</td>
<td>1.24</td>
<td>515</td>
</tr>
<tr>
<td>SiAl19</td>
<td>190</td>
<td>165</td>
<td>0.87</td>
<td>355</td>
</tr>
</tbody>
</table>
Figure SM6. X-ray diffraction of spent zeolites.
Figure SM7. 29Si NMR spectra for spent SiAl8 and SiAl12 zeolites.
Figure SM8. 27Al NMR spectra for spent zeolites.
Figure SM9. Correlations between initial rate and acid sites in all three dehydrated zeolites catalysts.
Figure SM10. Time-resolved xylose conversions for all three zeolite catalysts in the early reaction time region.
Figure SM11. Photo of aliquots and SiAl12 sample after 6 h of reaction at 130, 150 and 170 °C.