One-Pot Oxidative Cleavage of Cyclic Olefins for the Green Synthesis of Dicarboxylic Acids in Pickering Emulsions in the Presence of Phosphate Additives

Bingyu Yang,a,b Grégory Douyère,a Loïc Leclercq,a Véronique Nardello-Rataj,a,\ast and Marc Pera-Titusb,\ast

a Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

b Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China

c SOLVAY-Advanced Organic Chemistry & Molecule Design Laboratory, 85 Avenue des Frères Perret, 69192 Saint Fons, France

\astCorresponding author: veronique.rataj-nardello@univ-lille.fr, marc.pera-titus-ext@solvay.com
Experimental Section

Chemicals

Aerosil® 200 was a generous gift from Evonik Industries AG (Germany). Trimethoxy(octadecyl)silane (90%), Sodium hydrogenophosphate (98+) and sodium dihydrogenophosphate (99%) were purchased from Aldrich (USA). (3-mercapto-propyl)trimethoxysilane (99%) were purchased from Alfa Aesar (USA). Amberlite IRA-400 (Cl-) ion exchange resin and dodecyl trimethylammonium bromide (99%) were purchased from Alfa Aesar (USA). Tungstophosphoric acid, phosphoric acid and ammonium phosphate dibasic (>99%) were supplied by Acros (USA). Cyclohexene and cyclooctene (98%) were purchased from TCI (Japan). Hydrogen peroxide (50%) was procured from VWR International (France). DMSO-d6 (99.8%) and CDCl3 (99.8%) were purchased from Eurisotop (France) and were used for NMR analysis. All other chemical were purchased from Sigma-Aldrich and used without further purification. Millipore water (18.2 MΩ/cm; Simplicity 185) was used for preparing the particles and emulsions.

Synthesis of functionalized C12-POM NPs, [C12][H2PO4] and [C12]2[HPO4]

The protocol for preparing C12-POM NPs was adapted from a previous study. Briefly, dodecyltrimethylammonium bromide [C12][Br] (19.5 mmol) was dissolved in water (100 mL). An aqueous solution of [C12][Br] was eluted on a hydroxide ion exchange resin to obtain an aqueous solution of [C12][OH]. An aqueous solution of H3[PW12O40] (~6.5 mmol, 10^-4 M) was added dropwise (3 mL/min) to the aqueous [C12][OH] solution (3 × 10^-4 M) until pH 7 at 25 °C under dry Ar and vigorous magnetic stirring (1,500 rpm). The colourless precipitate of tri(dodecyltrimethylammonium) phosphotungstate formed within a few minutes was washed with water and lyophilized (Yield: 99%).

The protocols for preparing [C12][H2PO4] and [C12]2[HPO4] are the same than for C12-POM except that the aqueous solution of H3[PW12O40] is replaced by an aqueous solution of H3[PO4]. Molar ratios of 1:1 and 2:1 are used to obtain dodecyltrimethylammonium dihydrogen phosphate and di(dodecyltrimethylammonium) hydrogen phosphate, respectively. White precipitate are obtained, washed with water and lyophilized (Yield : 99% and 98% respectively).

Synthesis of functionalized silica NPs (C18/C3SO3H)

The protocol for preparing C18/C3SO3H NPs was adapted from a previous study. Briefly, trimethoxy(octadecyl)silane (16 mmol) and (3-mercapto-propyl)trimethoxysilane (4 mmol) were hydrolysed in a 100-mL water/ethanol (1:1 v/v) solution (pH 9.6) at room temperature overnight. The mixture was added dropwise to a suspension of Aerosil®200 (1 g / 50 mL water / 50 mL ethanol, pH 9.6), and was stirred for 24 h under reflux. After grafting, the suspension was cooled down and the white solid was filtered, washed with ethanol (3 x 30 mL) and acetone (30 mL), and dried overnight at 80 °C. The dried powder was grinded and the thiol groups were oxidized using 60-mL of an aqueous solution of H2O2 (50 wt%). Acetonitrile was added dropwise until a homogeneous suspension was
obtained (3 to 4 mL). The reaction mixture was stirred at 40 °C for 24 h. After the synthesis, the powder was filtered, washed with ethanol and dried (Yield: 98%).

Characterization of NPs

Thermogravimetric analysis (TGA) was carried out on a Q50 (TA Instrument, US) by heating the samples from room temperature to 900 °C at a rate of 10 °C/min under air atmosphere (100 mL(STP)/ min). The zeta potential of the samples was measured on a Zetasizer (Nano ZS ZEN 3600, Malvern, UK) equipped with a 4.0 mW He-Ne laser light source with a wavelength $\lambda = 632.8$ nm. The measurements were performed by dispersing the nanoparticles in water at 25 °C in the presence of the additives at constant ionic strength (1.0 mS/cm). The acidity of the $\text{C}_{18}/\text{C}_{3}\text{SO}_3\text{H}$ NPs was measured using aliquots, where 50 mg of the NPs were stirred with NaCl (5.85 g / 20 mL ethanol / 30 mL water) at room temperature for 24 h. Then, the NPs were filtered off and the resulting solution was titrated with a 0.025 M NaOH solution using a pH-meter (Meterlab PHM250 Ion Analyzer, Radiometer Analytical).

Preparation and characterization of emulsions

To generate Pickering emulsions, water (2.25 mL) and toluene (0.75 mL) were weighed before adding C_{12}-POM and/or $\text{C}_{18}/\text{C}_{3}\text{SO}_3\text{H}$ NPs (50 mg each, 3.6 wt.%). The emulsification was performed using an Ultraturrax T10 basic at 20 °C and 11,500 rpm for a given time (IKA Works, Inc., Germany) in a 5-mL sealed container. To destabilize the emulsions, these were centrifuged at 4,000 rpm for 20 min using a Sigma 2-16PK apparatus.

The type of emulsion was inferred by observing the evolution of a drop of each emulsion when a volume of either oil or water was added (dilution test). Microphotographs were taken using a light microscope Standard 25 ICS (Carl Zeiss AG, Germany) coupled with an Axiocam ERC-5s camera (Carl Zeiss AG, Germany). The emulsions were diluted with the continuous phase before observation and several photographs were taken in different locations to acquire a general view of the droplets. The images were analysed with ImageJ software (National Institutes of Health, USA). The distribution function (log-normal, defined by eq 1) of droplet diameters was obtained by treatment of at least 250 individual droplets using OriginPro 8® software.

$$y = \frac{A}{\sqrt{2\pi \omega d}} \exp\left(-\frac{\ln\left(\frac{d}{d_m}\right)^2}{2\omega^2}\right)$$

where y is the density function, ω is the polydispersity (the peak will be approximately symmetric when ω is small), d_m is the median droplet diameter (d_m refers to the peak centre when the log-normal distribution is approximately symmetric), and A is the amplitude corresponding to the area under the integrated curve.

The emulsion stability was examined by the evolution in the emulsion volume fraction as a function of storage time at 60 °C to simulate the reaction conditions.
Finally, the pH of the emulsions was measured in the presence of the additives after stabilization using a pH-meter (Meterlab PHM250 Ion Analyzer, Radiometer Analytical). The pH was measured by adding 1 wt% emulsion in deionized water.

Catalytic tests

In a typical catalytic test, toluene (0.75 mL) containing the given cycloalkene (2 mol/L) and water (2.25 mL) containing 1.2 equiv H$_2$O$_2$ (2.4 mmol, 50%) was added to a 5-mL flask and placed in a thermoregulated Lauda RC6 water bath, followed by C$_{12}$-POM and/or C$_{18}$/C$_3$SO$_3$H NPs (50 mg each). The system was pre-emulsified using an Ultra-Turrax® (IKA T 25) at 11,500 rpm for 1 min. The reactor was sealed, heated at 65 °C for 4 h under stirring (500 rpm) to epoxidize the double bond. Then, another 3.5 equiv. H$_2$O$_2$ (7 mmol, 50%) was added to the system, this was re-emulsified and the reaction was pursued at 80 °C for a given time (12 h for cyclohexene and 24 h for cyclooctene) under stirring (500 rpm). The composition of the organic and aqueous phases was analysed along the reaction by 1H NMR after decantation. CDCl$_3$ and deuterated DMSO were used as solvents for each phase, respectively, whereas n-dodecane and n-dodecanol were used as internal standards. All the catalytic tests and analyses were carried out at least three times to ensure repeatability.

References

Table 1. Catalytic results for the oxidative cleavage of different cyclic alkenes using mixed C_{12}POM + C_{18}/C_{3}SO_{3}H NPs\(^1\)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Conversion (%)</th>
<th>Selectivity (%)</th>
<th>Epoxide</th>
<th>Diol</th>
<th>Diacid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>99</td>
<td>1.0</td>
<td>20</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>6.1</td>
<td>8.5</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 (99)</td>
<td>24 (20)</td>
<td>43 (8)</td>
<td>37 (72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>99</td>
<td>2.0</td>
<td>25</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>1.2</td>
<td>31</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Reaction conditions: 0.75 mL toluene (2 mol/L cyclic alkene), 2.25 mL H\(_2\)O (1.2 equiv. H\(_2\)O\(_2\)), 50 mg C\(_{12}\)-POM, 50 mg C\(_{18}/C_{3}\)SO\(_3\)H, 2 equiv. Na\(_2\)HPO\(_4\) with respect to C\(_{12}\)-POM, 60 °C, 500 rpm 4 h, followed by 3.5 equiv. H\(_2\)O\(_2\), 80°C, 500 rpm, 12 h. \(^2\) In parentheses, reaction conducted for 24 h.