Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

NiFe₂O₄ hollow nanoparticles with small size on carbon nanotubes for oxygen evolution

Jianyu Kang,^a Feng Yan, ^{*a} Chunyan Li,^a Lihong Qi,^a Bo Geng,^b Yue Wang,^a Chunling Zhu^{*b} and Yujin Chen^{*ac}

^{*a*} Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, and College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China ^{*b*} College of Chemistry and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding authors.

E-mail addresses: yanfeng@hrbeu.edu.cn (F. Yan), zhuchunling@hrbeu.edu.cn (C. Zhu) and chenyujin@hrbeu.edu.cn (Y. Chen).

Experimental Section

Preparation of NiFe₂O₄-HNP /CNTs. NiFe₂O₄-HNP/CNTs were fabricated through a facile method based on Kirkendall effect. First, 1.0 g of CNTs was dispersed in 100 mL of hydrogen peroxide and heated to 140°C for 2 h to obtain surface-active CNTs. 27.0 mg of surface-active CNTs were dispersed into 72.0 mL of ethanol, then 150.0 mg of nickel acetate and 57.0 mg of iron acetylacetonate were added. After 15 min ultrasonic treatment, 2.0 mL of ammonia and 3.6 mL of distilled water were added to the above mixture. The mixture was sealed and heated to 80°C in water bath for 10 h under stirring. The precipitate was washed with ethanol and water for several times, and then NiFe hydroxide/CNTs were obtained. Second, the NiFe hydroxide/CNTs were heated in a tube furnace at 350°C for 3 h under a H₂/Ar flow, and then at 200°C for 3 h and 280°C for another 3 h at air atmosphere, respectively. After the tube furnace was cooled to room temperature, NiFe₂O₄-HNP/CNTs were fabricated.

Preparation of NiFe₂O₄-NP/CNTs and NiFe₂O₄-NPs. Compared with NiFe₂O₄-HNP /CNTs, the NiFe₂O₄-NP/CNTs were synthesized under the same conditions except the precursor of NiFe hydroxide/CNTs were directly annealed at 200°C for 3 h and 280°C for another 3 h at air atmosphere. Similarly, compared with NiFe₂O₄-NP /CNTs, the NiFe₂O₄-NPs was fabricated under the same conditions except the addition of CNTs.

Preparation of NiO-HNP/CNTs and Fe₂O₃-NP/CNTs. Compared with NiFe₂O₄-HNP /CNTs, all the synthesis process were under the same conditions except the only nickel acetate (190.2 mg) or iron acetylacetonate (212.9 mg) was added to the solution in the first step, and after the same heat treatment, the corresponding NiO-HNP/CNTs and Fe₂O₃-NP/CNTs were synthesized, respectively.

Structural characterization. A JSM 7401F scanning electron microscope (SEM) operated at 3.0 kV and a JEM2010 high-resolution transmission electron microscope (TEM) were used to characterize the morphology. X-ray diffraction (XRD) patterns were measured using a Bruker D8 Advance diffractometer. X-ray photoelectron spectroscopy (XPS) patterns were characterized using a PHI 5700 ESCA System.

Electrochemical measurements. 5.0 mg of NiFe₂O₄-HNP/CNTs were dispersed in 350 μ L of ethanol. After 1 h of ultrasound, 50.0 μ L of nafion was added to the above mixed solution and continued ultrasound for another 1 h. Then, 3.1 μ L of the mixed solution dripped onto the surface of a glassy carbon disk electrode with a catalyst loading of around 0.2 mg cm⁻². A standard three-electrode system was performed by using the as-prepared catalyst as work

electrode, graphite rod as the counter electrode and Ag/AgCl electrode as the reference electrode. All the electrochemical measurements were executed in both 1.0 M KOH solution after purging the electrolyte with N₂ gas for 30 min. All potentials measured were calibrated to RHE using the following Equation: $E(RHE) = E(Ag/AgCl) + 0.21 V + 0.059 \times pH$. All current densities presented are corrected against ohmic potential drop.

Fig. S1 a) SEM and b) TEM images of nickel and iron hydroxides grown on the surfaces of the CNTs.

Fig. S2 XRD pattern of nickel and iron hydroxides.

Fig. S3 a) SEM and b) TEM images of NiFe alloy NP/CNTs.

Fig. S4 a) TEM and b) HRTEM images of NiFe₂O₄-HNP/CNTs.

Fig. S5 a) TGA curve of NiFe₂O₄-HNP/CNTs. XRD patterns of b) NiFe₂O₄-NPs and c) NiFe₂O₄-NP/CNTs.

Fig. S6 a) SEM and b) TEM images of NiFe₂O₄-NPs. c) SEM and d) TEM images of NiFe₂O₄-NP/CNTs.

Fig. S7 a, c) Nitrogen adsorption and desorption isotherms and b, d) the corresponding poresize distribution calculated of NiFe₂O₄-HNP/CNTs and NiFe₂O₄-NP/CNTs.

Fig. S8 XRD patterns of a) NiO-HNP/CNTs and b) Fe₂O₃-NP/CNTs.

Fig. S9 a) SEM, b) TEM, and c) HRTEM images of NiO HNP/CNTs. d) SEM, e) TEM, and f) HRTEM images of Fe₂O₃ NP/CNTs.

Fig. S10 polarization curves for NiO HNP/CNTs and Fe_2O_3 NP/CNTs for OER in 1.0 M KOH solution.

Fig. S11 XPS spectra of a) Ni 2p, b) Fe 2p, and c) O 1s after 3h OER measurement.

Catalysts	Tafel slope (mV dec ⁻¹)	$\eta_{10}(\mathrm{mV})$	Electrolyte	Refs.
NiFe LDH-MOF	47	275.4	1.0 M KOH	Adv. Funct. Mater. 2019, 1903875
FeNi ₂ S ₄ /GA	66	273	1.0 M KOH	J. Mater. Chem. A 2018, 6, 19417
Ni-Fe LDH hollow	49.4	280	1.0 M KOH	Angew. Chem. Int. Ed. 2018, 57,
nanoprisms				172
polyelemental				Adv. Mater. Interfaces 2019,
(Co, Ni, Fe, W, B, P)	30	110	1.0 M KOH	1900586.
hollow nanoparticles				
CoFeNi-nanosheets	44	240 (<i>j</i> =100 mA	1.0 M KOH	ACS Appl. Energy Mater. 2019, 2,
array		cm ⁻²)		8919.
FeB ₂	52.4	296	1.0 M KOH	Adv. Energy Mater. 2017, 7,
				1700513
Exfoliated NiFe LDH	89	270	1.0 M KOH	Adv. Mater. 2017, 29, 1700017
Ni ₃ FeN-NP	46	280	1.0 M KOH	Adv. Energy Mater. 2016, 6,
				1502585
NiSe nanowire	64	270	1.0 M KOH	Angew. Chem., Int. Ed.
				2015, 54, 9351
NiFeCr LDH/GC	131	280	1.0 M KOH	Adv. Energy Mater. 2018, 8,
				1703189
Co-NiMoN NRs	73.48	294	1.0 M KOH	ACS Appl. Mater. Interfaces 2019,
				11, 27751
NiFe ₂ O ₄ -HNP/CNTs	40	260	1.0 M KOH	This work

Table S1. Comparison of the OER activities of $NiFe_2O_4$ HNP/CNTs in 1.0 M KOH with recently published results.