Supporting Information

Ag-CoO nanocomposites for gas phase oxidation of alcohols to aldehydes and ketones: Intensified O₂ activation at Ag-CoO interfacial sites

Kun Liu^a, Yichen Zhao^a, Jiale Wang^a, Qingsong Xue^{b*}, and Guofeng Zhao^{b*}

aInstitute of optical functional materials for biomedical imaging, School of Chemistry and

Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of

Medical Sciences, Taian, 271016, China

^bShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry

and Molecular Engineering, East China Normal University, Shanghai 200062, China

*Corresponding authors: qsxue@chem.ecnu.edu.cn (Qingsong Xue),

gfzhao@chem.ecnu.edu.cn (Guofeng Zhao)

Catalyst	Ti-powder	3Ag/Ti-powder	3Ag-3Co ₃ O ₄ /Ti-powder
SSA^{a} (m ² /g)	1.2	1.3	1.3

 Table S1. Specific surface areas of these fresh samples.

^{*a*}SSA: specific surface area.

Catalyst	\mathbf{T}^{a}	WHSV	Ag loading	SSA^b	$\mathrm{D}_{\mathrm{Ag}}{}^{c}$	Conv. ^d	Sel. ^e
	(°C)	(h ⁻¹)	(wt%)	(m ² /g)	(nm)	(%)	(%)
Ag/Ni-fiber [1]	380	20	9.7	-	200-300	92	87
Ag/HMS [2]	320	12.5	2.8	605	5-10	99	96
$Ag/SiO_2[3]$	320	20	1.0	297	-	80	~100
Ag/Ni-fiber-M [1]	300	20	9.9	-	10*100	97	97
Ag _{2.5} Cu ₅ SiC [4]	280	20	2.5	0.2	30-70	99	99
Ag/CaO [3]	240	20	1.0	-	-	22	~100
Ca-Ag/SiO ₂ [5]	240	20	1.0	200	-	66	~100

Table S2. Comparison of the catalysts.

^{*a*}Reaction temperature; ^{*b*}Specific surface area; ^{*c*}Particle size of Ag; ^{*d*}Benzyl alcohol conversion; ^{*e*}Benzaldehyde selectivity.

[1] M. Deng, G. Zhao, Q. Xue, L. Chen, Y. Lu, Appl. Catal. B: Environ., 2010, 99, 222-228.

[2] J. Jia, S. Zhang, F. Gu, Y. Ping, X. Guo, Z. Zhong, F. Su, *Micropor. Mesopor. Mat.*, 2012, 149, 158-165.

[3] R. Yamamoto, Y. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyama, S. Tsuruya, J. Catal., 2005, 234, 308-317.

[4] L. Zhao, L. Kong, C. Liu, Y. Wang, L. Dai, Catal. Commun., 2017, 98, 1-4.

[5] Y. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyama, S. Tsuruya, *Ind. Eng. Chem. Res.*, 2006, 45, 8837-8845.

Catalyst	2 A a/Ti nowdor	3Co ₃ O ₄ /Ti-	2 A g 2 Co O /Ti powdor	
Catalyst	5Ag/11-powdel	powder	SAg-SC0304/11-powder	
SSA (m ² /g)	1.3	1.3	1.5	
Coke content ^a (wt%)	0.3	0.2	0.6	
aColor and and a second data	main a l has TC			

 Table S3. Specific surface areas and coke contents of the pre-activated catalysts.

^{*a*}Coke contents were determined by TG.

Table S4. Specific surface areas, coke contents, and particle sizes of Ag and Co-species $(Co_3O_4 \text{ or } CoO)$ of the used catalysts.

Catalyst	SSA (m ² /g)	Coke content ^c (wt%)	$\mathbf{D}_{\mathrm{Ag}}^{d}\left(\mathrm{nm}\right)$	$D_{Co}^{e}(nm)$
3Ag-3Co ₃ O ₄ /Ti-powder ^a	1.4	0.2	36	12
3Ag-3CoO/Ti-powder ^b	1.5	0.9	38	11

^{*a*}The fresh catalyst 3Ag-3Co₃O₄/Ti-powder was directly tested at 240 °C (the main phase is Ag-Co₃O₄).

^{*b*}The fresh catalyst 3Ag-3Co₃O₄/Ti-powder was directly tested at 280 °C (the main phase is Ag-CoO).

^cCoke contents were determined by TG.

^{*d*}Particle size of Ag is calculated by Ag(111) peak using the Scherrer equation.

^{*e*}Particle sizes of Co_3O_4 and CoO are respectively calculated by $Co_3O_4(311)$ and CoO(200) peaks using the Scherrer equation.

Catalyst	SSA (m ² /g)	Coke content ^c (wt%)	$D_{Co}^{d}(nm)$
3Co ₃ O ₄ /Ti-powder ^a	1.3	0.3	7.8
3CoO/Ti-powder ^b	1.4	0.4	9.5

Table S5. Specific surface areas, coke contents, and particle sizes of Co-species (Co₃O₄ or

CoO) of the used catalysts.

^{*a*}The fresh catalyst 3Co₃O₄/Ti-powder was directly tested at 240 °C (the main phase is Co₃O₄). ^{*b*}The fresh catalyst 3Co₃O₄/Ti-powder was directly tested at 280 °C (the main phase is CoO). ^{*c*}Coke contents were determined by TG.

^{*d*}Particle sizes of Co_3O_4 and CoO are respectively calculated by $Co_3O_4(311)$ and CoO(200) peaks using the Scherrer equation.

Catalyst	V_{total}^{b} (×10 ⁻⁴ , cm ³)	D _{Ag} ^c (nm)	V _{Ag-particle} (nm ³)	A Amount of Ag Particles (×10 ¹⁴)	$S_{Ag-particle}^{e}$ (nm ²)	S _{total} (cm ²)	Amount of Surface Ag Atoms ^{e} (×10 ¹⁸)	Conv. ^f (%)	N ^g (×10 ²²)	TOF (h ⁻¹)
3Ag-3CoO/Ti-powder ^h	8.58	40	16746	0.51	2512	1281	1.63	4	3.36	20612
3Ag-3CoO/Ti-powder ⁱ	8.58	40	16746	0.51	2512	1281	1.63	2.9	2.48	15225
3Ag/Ti-powder ^h	8.58	38	14358	0.60	2267	1360	1.73	1.1	0.91	5288
3Ag/Ti-powder ⁱ	8.58	38	14358	0.60	2267	1360	1.73	0.3	0.25	1445

Table S6. The turnover frequencies (TOFs) of benzyl alcohol oxidation over the catalysts based on the diameter of Ag NPs^a.

^{*a*}For each catalyst, 0.3 g was used in testing experiments; ^{*b*}The total volume of Ag (V_{total}) is calculated as: silver mass (0.3 g × Ag-loading (wt%)) is divided by the silver density (10.49 g/cm³); ^{*c*}The particle size is estimated from XRD patterns using Scherrer's equation; ^{*d*}The silver particles are assumed as hemisphere, and the volume of single silver particle is $\pi D_{Ag}^{3}/12$, and the surface area is $\pi D_{Ag}^{2}/2$; ^{*e*}The distance between the adjacent silver atoms is 0.28 nm, and one Ag atom occupies the surface area of 0.0784 (0.28 × 0.28 = 0.0784) nm²; ^{*f*}The weight hourly space velocity (WHSV) = 500 h⁻¹, and 150 g benzyl alcohol was fed into the reactor in an hour; ^{*g*}Amount of converted benzyl alcohol (Take the converted benzyl alcohol over the catalyst 3Ag-3CoO/Ti-powder as example: the converted benzyl alcohol in one hour is 6 g (150 × 0.04 = 6 g), and the converted amount of benzyl alcohol molecule is 3.36×10^{22} (6 (g) ÷ 108 (g/mol) = 0.0556 mol; $0.0556 \times 6.02 \times 10^{23} = 3.36 \times 10^{22}$)); ^{*h*}240 °C; ^{*i*}220 °C.

Catalyst	D _{Ag} ^b (nm)	Dispersion ^c	Amount of Surface Ag Atoms ^d (×10 ¹⁸)	Conv. ^e (%)	№ (×10 ²²)	TOF (h ⁻¹)
3Ag-3CoO/Ti-powder ^g	40	0.025	1.25	4	3.36	26880
3Ag-3CoO/Ti-powder ^h	40	0.025	1.25	2.9	2.48	19840
3Ag/Ti-powder ^g	38	0.026	1.30	1.1	0.91	7000
3Ag/Ti-powder ^h	38	0.026	1.30	0.3	0.25	1923

Table S7. The turnover frequencies (TOFs) of benzyl alcohol oxidation over the catalysts based on the dispersion of Ag NPs^a.

^{*a*}For each catalyst, 0.3 g was used in testing experiments; ^{*b*}The particle size is estimated from XRD patterns using Scherrer's equation; ^{*c*}The silver dispersion is $1/D_{Ag}$; ^{*d*}Amount of Surface Ag atoms: catalyst weight × Ag content × dispersion × 6.02 × 10 ²³/Molecular weight of Ag; ^{*e*}The weight hourly space velocity (WHSV) = 500 h⁻¹, and 150 g benzyl alcohol was fed into the reactor in an hour; ^{*f*}Amount of converted benzyl alcohol over the catalyst 3Ag-3CoO/Ti-powder as example: the converted benzyl alcohol in one hour is 6 g (150 × 0.04 = 6 g), and the converted amount of benzyl alcohol molecule is 3.36×10^{22} (6 (g) ÷ 108 (g/mol) = 0.0556 mol; 0.0556 × 6.02 × 10 ²³ = 3.36×10^{22}); ^{*s*}240 °C; ^{*h*}220 °C.

Catalyst	V_{total}^{b} (×10 ⁻⁴ , cm ³)	D _{CoO} ^c (nm)	$V_{CoO-particle}^{d}$ (nm ³)	Amount of CoO Particles $(\times 10^{14})$	$S_{CoO-particle}^{e}$ (nm ²)	S _{total} (cm ²)	Amount of Surface CoO Atoms ^e (×10 ¹⁸)	Conv <i>.f</i> (%)	N ^g (×10 ²²)	TOF (h ⁻¹)
3Ag-3CoO/Ti-powder ^h	13.02	13	574	22.68	265	6010	6.29	4	3.36	5341
3Ag-3CoO/Ti-powder ⁱ	13.02	13	574	22.68	265	6010	6.29	2.9	2.48	3942
3CoO/Ti-powder ^h	13.02	11	348	37.4	190	7106	7.44	0.9	0.756	1016
3CoO/Ti-powder ⁱ	13.02	11	348	37.4	190	7106	7.44	0.4	0.336	452

Table S8. The turnover frequencies (TOFs) of benzyl alcohol oxidation over the catalysts based on the diameter of CoO NPs^a.

*^a*For each catalyst, 0.3 g was used in testing experiments; *^b*The total volume of CoO (V_{total}) is calculated as: CoO mass (0.3 g × CoO-loading (wt%)) is divided by the CoO density (6.45 g/cm³); *^c*The particle size is estimated from XRD patterns using Scherrer's equation; *^d*The CoO particles are assumed as hemisphere, and the volume of single CoO particle is $\pi D_{CoO}^3/12$, and the surface area is $\pi D_{CoO}^2/2$; *^e*One CoO occupies the surface area of 0.0955 (0.25 × (0.25+0.132) = 0.0955) nm²; *^f*The weight hourly space velocity (WHSV) = 500 h⁻¹, and 150 g benzyl alcohol was fed into the reactor in an hour; *^g*Amount of converted benzyl alcohol; *^h*240 °C; *ⁱ*220 °C.

Table S9. Reaction rates of the cataly	ysts ^a .
---	---------------------

Catalyst	Surface ar	ea (m 2 /g)		Т ^е (°С)	Conv. ^f (%)	N ^g (mmol)	Reaction rate (mmol/m ² h)	e)	
	SSA^b	${\rm S}_{\rm Ag}{}^c$	S_{CoO}^{d}	_ ` `			R _{SSA} ^h	$R_{Ag}{}^i$	R _{CoO} ⁱ
3Ag-3CoO/Ti-powder	1.5	0.42	2.00	240	4	55	122	436	91.5
3Ag-3CoO/Ti-powder	1.5	0.42	2.00	220	2.9	40	89	317	66.5
3Ag/Ti-powder	1.3	0.45	-	240	1.1	15.3	39	113	-
3Ag/Ti-powder	1.3	0.45	-	220	0.3	4.1	10.5	30.2	-
3CoO/Ti-powder	1.3	-	2.36	240	0.9	12.3	31.5	-	17.3
3CoO/Ti-powder	1.3	-	2.36	220	0.4	5.46	14	-	7.71

^{*a*}For each catalyst, 0.3 g was used in testing experiments and WHSV is 500 h⁻¹; ^{*b*}Specific surface area of the catalyst; ^{*c*}Surface area of Ag NPs; ^{*d*}Surface area of CoO NPs; ^{*e*}Reaction temperature; ^{*f*}benzyl alcohol conversion; ^{*g*}Number of converted benzyl alcohol; ^{*h*}Reaction rate based on the surface area of the catalyst; ^{*h*}Reaction rate based on the surface area of Ag NPs; ^{*h*}Reaction rate based on the surface area of CoO NPs.

	Reaction	Benzyl alcohol	Benzaldehyde	Single run
Catalyst	temperature	conversion	selectivity	life time
	(°C)	(%)	(%)	(h)
3Ag-3Co ₃ O ₄ /Ti-	240	00.04	07.00	150
powder ^a	240	90-94	97-99	150
3Ag-3Co ₃ O ₄ /Ti-	240	02.04	07.00	200
powder ^b	240	92-94	97-99	300
	320	99	96	5
Ag/HMS ^[1]	300	94-97	97-98	20
Ag/Ni-fiber ^[2]				
AgCu/SiC-powder ^[3]	280	95-99	98-99	140

Table S10. Stability of the catalysts used in the gas phase selective oxidation of benzyl

 alcohol to benzaldehyde.

^{*a*}The fresh catalyst 3Ag-3Co₃O₄/Ti-powder pre-activated at 380 °C. ^{*b*}The fresh catalyst 3Ag-3Co₃O₄/Ti-powder reduced at 300 °C.

[1] J. Jia, S. Zhang, F. Gu, Y. Ping, X. Guo, Z. Zhong, F. Su, Micropor. Mesopor. Mat., 2012,

149, 158-165.

[2] M. Deng, G. Zhao, Q. Xue, L. Chen, Y. Lu, Appl. Catal. B: Environ., 2010, 99, 222-228.

[3] L. Zhao, L. Kong, C. Liu, Y. Wang, L. Dai, Catal. Commun., 2017, 98, 1-4.

Fig. S1. SEM images of (A) pristine Ti-powder with smooth surface, (B) $3Co_3O_4/Ti$ -powder with rough surface, (C) 3Ag/Ti-powder with light Ag NPs on Ti-powder smooth surface, (D) $3Ag-3Co_3O_4/Ti$ -powder. Based on the SEM images in (A-C), it is clear that the amorphous substance with darker contrast level in (D) should be attributed to Co_3O_4 , and the light spots should be attributed to Ag NPs.

Fig. S2. (A) Ag MVV spectrum of 3Ag/Ti-powder; (B) Co 2p spectrum of 3CoO_x/Ti-powder.

Fig. S3. (A) TEM and (B) HRTEM images of the 3Ag/Ti-powder.

Note: For the fresh 3Ag/Ti-powder and 3Ag-3CoO_x/Ti-powder catalysts, their XRD patterns show that the Ag particle sizes of these two catalysts are about 30-50 nm, but their SEM images show that the particle sizes are about 100 nm (Fig. 1A,E). From the TEM images, we could see that four or five Ag NPs gather together to form the ensembles of about 100 nm (Fig. 1H and Fig. S3A). As for the Co-species in $3Co_3O_4/Ti$ -powder and $3Ag-3Co_3O_4/Ti$ -powder (Figs. 1I,5D), the particle sizes of Co_3O_4 and CoO are not easy to be estimated due to its amorphous feature, and thus the particle sizes of Co-species are estimated by XRD to be about 10 nm.

Fig. S4. (A) Benzyl alcohol conversion and benzaldehyde selectivity of the pure Ti-powder; Benzyl alcohol conversions of (B) the catalysts with pre-activation and (C) the ones without pre-activation (a, 5Ag/Ti-powder; b, 3Ag/Ti-powder; c, 1Ag/Ti-powder; d, $5Co_3O_4/Ti$ -powder; e, $3Co_3O_4/Ti$ -powder; f, $1Co_3O_4/Ti$ -powder).

Fig. S5. Catalytic performances of the pre-activated $3Ag-3Co_3O_4/Ti$ -power in the cooling-heating-cooling processes.

Fig. S6. (A) XRD patterns and (B) the as-amplified part of the catalysts (a, Ti-powder, b, unactivated 3Ag-3Co₃O₄/Ti-powder); (C) Ag MVV and (D) Co 2p spectra of the un-activated 3Ag-3Co₃O₄/Ti-powder.

Fig. S7. (A) XRD patterns and (B) the as-amplified part of the catalysts (a: Ti-powder, b: unactivated $3Ag-3Co_3O_4/Ti$ -powder after 280 °C testing); (C) Ag MVV spectrum, (D) Co 2p spectrum, and (E) benzyl alcohol conversion and benzaldehyde selectivity of the un-activated $3Ag-3Co_3O_4/Ti$ -powder directly after 280 °C testing.

Fig. S8. (A) XRD patterns and (B) Co 2p spectra of the 3Co₃O₄/Ti-powder after testing at different temperatures (a, 280 °C; b, 240 °C).

Fig. S9. (A) Co 2p spectra of the mixture of Co_3O_4 and CoO (the molar ratio of CoO/Co_3O_4 : a, CoO; b, 9/1; c, 8/2; d, 7/3; e, 6/4; f, 5/5; g, 4/6; h, 3/7; i, 2/8; j, 1/9; k, Co_3O_4); (B) Intensity ratio of peak I to peak II (in A; denoted as I_I/I_{II}) *versus* CoO content (*i.e.*, CoO/(CoO + Co_3O_4)).

Note: In order to further estimate the CoO content in the reduced catalysts in *Section 3.3.3*, we conducted the XPS analysis for the mixture of CoO and Co₃O₄. We could see the I_I/I_{II} value is increased with raising the CoO content and there is a linear relationship between the I_I/I_{II} and CoO content. So the CoO content in the catalyst reduced at 200 °C is calculated as the results mentioned above.

Part I: Quantitative analyses of O₂-TPD results

In order to determine the amount of as-desorbed O_2 , the O_2 pulse experiment was conducted. One should be noted is that the chemisorption apparatus (ChemBET Pulsar TPR/TPD) records the curves of O_2 -TPD based on the temperature (X axis) and the TCD signal (Y axis), while records the profile of O_2 pulse according to the time (X axis) as well as the TCD signal (Y axis). So we convert the temperature (°C, X axis) in Fig. 6 to time (s, X axis). O_2 of 0.0098 mL corresponds to the peak area of 42, and the quantitative analyses are listed as follows:

Fig. S10. The transformed O₂-TPD spectra in Fig. 6 fitted using the PEAKFIT programs for the catalysts ((A-C) used 3CoO/Ti-powder, 3Ag/Ti-powder, and 3Ag-3CoO/Ti-powder running in the presence of O₂ for 0.5 h; (D-F) the used 3CoO/Ti-powder, 3Ag/Ti-powder, and 3Ag-3CoO/Ti-powder running in the absence of O₂ for 0.5 h). Note: the desorption time from 0 to 3000 s corresponds to the temperature from 200-950 °C.

Catalyst	Content of oxygen species (Temperature)					
	Peak 1	Peak 2	Peak 3			
	(mmol/g) (°C)	(mmol/g) (°C)	(mmol/g) (°C)			
3CoO/Ti-powder	0.1730 (630)	0.0992 (750)	-			
3CoO/Ti-powder ^a	0.1645 (635)	0.0799 (750)	-			
3Ag/Ti-powder	0.2532 (625)	-	-			
3Ag/Ti-powder ^a	0.2204 (635)	-	-			
3Ag-3CoO/Ti-powder	0.1503 (628)	0.1878 (739)	0.0272 (530)			
3Ag-3CoO/Ti-powder ^a	0.1654 (625)	0.1760 (735)	-			

Table S11. Quantitative analyses of the oxygen species derived from O₂-TPD profiles.

^{*a*}The catalysts run in the absence of O_2 for 0.5 h.

From Section 3.5.1 in the manuscript, we know that the benzyl alcohol conversions are very low for 3CoO/Ti-powder and 3Ag/Ti-powder irrespective of O_2 supplement. So the variation of the oxygen species attributed to peak 1 or 2 is not vital to the catalytic activities. However, peak 3 is absent with benzyl alcohol conversion decreasing from 92% to below 1% for 3Ag-3CoO/Ti-powder after switching-off O_2 , so the active oxygen species at 530 °C plays an important role in this reaction and the amount of this active oxygen species is 0.0272 mmol/g. The similar desorption temperature of the active oxygen species is also found for our previous Au/Ni-fiber catalyst [1].

[1] G. Zhao, J. Huang, Z. Jiang, S. Zhang, L. Chen, Y. Lu, *Appl. Catal. B: Environ.*, 2013, 140-141, 249.

Part II: Quantitative analyses of H₂-TPR results

In order to determine the amount of H_2 consumed in TPR experiments, the H_2 pulse experiment was conducted. One should be noted is that the chemisorption apparatus (ChemBET Pulsar TPR/TPD) records the curves of H_2 -TPR based on the temperature (X axis) and the TCD signal (Y axis), while records the profile of H_2 pulse according to the time (X axis) as well as the TCD signal (Y axis). So we convert the temperature (°C, X axis) in Fig. 7C to time (s, X axis). H_2 of 0.0224 mL corresponds to the peak area of 250, and the quantitative analyses are listed as follows:

Fig. S11. The transformed H₂-TPR profile in Fig. 7C (for the fresh $3Ag-3Co_3O_4/Ti$ -powder, the heating rate is 10 °/min and the temperatures at 1100 and 1538 s are 250 and 340 °C, respectively).

The peak areas at 1100 s and 1538 s are 9020 and 28750 respectively, so the amount of H₂consumption for the peak at 1100 s and the peak at 1538 s are 0.036 and 0.115 mmol. Therefore, the former peak is attributed to the reduction of Co_3O_4 to CoO, and the second one should be to the CoO reduction to metallic Co given to the fact that the theoretical H₂-consumption ratio for $Co_3O_4 \rightarrow CoO$ to $CoO \rightarrow Co$ is 1/3.