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Fig. S1 XRD patterns of Sn-Beta crystallized at 140 °C for 3 d with nyyo/nsi02 Of ()

4.5, (b) 5.5, (c) 6.5 and (d) 7.5.
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Fig. S2 XRD patterns of Sn-Beta-7.5 crystallized for different time. (a) 3 d without

seed, (b) 7 d without seed, (c¢) 15 d without seed and (d) 3 d with seed.

Fig. S3 SEM images of Sn-Beta crystallized at 140 °C for 3 days with ny;0/nsi02 of (a)

7.5, (b) 6.5, (¢) 5.5 and (d) 4.5.
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Fig. S4 XRD patterns of Sn-Beta at the nyyo/nsi02 0f (2) 4.5 and (b) 7.5.
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Fig. S5 SEM images of Sn-Beta obtained from the gel with nyyo/nsi02 of 4.5. (a) 6 h,

(b) 12 h, (c) 1 d, (d)2d, () 5 d, () 7 d.



Fig. S6 SEM images of Sn-Beta obtained from the gel with nyyo/nsior of 7.5. (a) 1 d,

(b)3d,(c)7d,(d)154d.
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Fig. S7 N, isotherms of Sn-Beta-4.5 (a) and Sn-Beta-7.5 (b).




——— Sn-Beta-4.5-0
—— Sn-Beta-7.5-0
—3n0,

’5

s

é

g

200 300 400 500 600

Wavelength (nm)

Fig. S8 UV-visible DR spectra of Sn-Beta-4.5 and Sn-Beta-7.5 without crystallization

and bulk SnO,.
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Fig. S9 UV-visible DR spectra of Sn-Beta-4.5 (a) and Sn-Beta-7.5 (b).
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Fig. S10 XRD patterns of Sn-Beta without crystallization.
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Fig. S11 XRD patterns of bulk SnO,.
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Fig. S12 FT-IR spectra of CD;CN absorbed on Si-Beta and the mixture of SnO, and

Si-Beta. The spectra were obtained after evacuation at room temperature for 15 min.
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Fig. S13 Deconvolution of FT-IR spectra of CD;CN adsorption on Sn-Beta-4.5. The

spectra were obtained at room temperature after evacuation for 15 min.
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Fig. S14 Deconvolution of FT-IR spectra of CD;CN adsorption on Sn-Beta-7.5. The

spectra were obtained at room temperature after evacuation for 15 min.
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Fig. S15 Configurations of Lewis acid Sn site.
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Fig. S16 XRD patterns of fresh and reused Sn-Beta-4.5-7 and Sn-Beta-7.5-15.
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Fig. S17 Deconvolution of FT-IR spectra of CD;CN adsorption on reused Sn-Beta.

The spectra were obtained after evacuation at room temperature for 15 min.
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Fig. S18 N, isotherms of resued Sn-Beta-4.5-7 and Sn-Beta-7.5-15.
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Fig. S19 UV-visible DR spectra of Sn-Beta-4.5-7 (a) and Sn-Beta-7.5-15 (b).
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Fig. S20 Reusability of Sn-Beta-7.5-1 in the conversion of glucose to MLA.
Reaction conditions: glucose (0.20 g), catalyst (0.37 g), methanol (12 g), N, (0.4
MPa), 140 °C, 0.5 h.
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Fig. S21 XPS of Sn-Beta-4.5-0 (a), Sn-Beta-7.5-0 (b) and bulk SnO, (c).
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Fig. S22 XPS of Sn-Beta-4.5 (a) and Sn-Beta-7.5 (b).

XPS of bulk SnO, shows two signals at 495.0 eV and 486.6 eV (Fig. S21)
corresponding to Sn 3ds; and Sn 3ds), photoelectrons of octahedrally-coordinated tin
species. Though Sn species are also octahedrally-coordinated in Sn-Beta-4.5-0 and
Sn-Beta-7.5-0, the signals shifted to higher binding energy (495.8 eV and 487.4 eV)
due to that Sn species is highly dispersed. Except for Sn-Beta-4.5-7, Sn-Beta
samples crystallized for different time give two signals at higher binding energy
(496.0 eV and 487.6 eV) (Fig. S22) than highly dispersed octahedrally-coordinated
Sn species, meaning that Sn species were in the tetrahedrally-coordinated framework
sites. Of course, some Sn species at extraframework sites cannot be excluded. For
Sn-Beta-4.5-7, the two signals shifted to lower binding energy (495.5 eV and 587.1

eV) than highly dispersed octahedrally-coordinated Sn species. It suggests that there



are more extraframework SnO, species in larger size, which agrees with the above

results of SEM and UV-vis DRS.
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Fig. S23 TG analyses of Sn-Beta-4.5 (a) and Sn-Beta-7.5 (b).

Table S1 Percent weight loss of Sn-Beta-4.5 and Sn-Beta-7.5 from TG analyses

Weight loss (wt.%)

Sample

I II I
Sn-Beta-4.5-0.25 4.0 7.7 5.7
Sn-Beta-4.5-0.5 2.0 9.0 5.6
Sn-Beta-4.5-1 1.5 14.4 2.6
Sn-Beta-4.5-7 0.6 17.0 1.0
Sn-Beta-7.5-1 2.5 8.4 59
Sn-Beta-7.5-3 1.3 9.0 5.9
Sn-Beta-7.5-7 0.9 17.4 1.6
Sn-Beta-7.5-15 1.3 18.0 1.2

The TG curves of Sn-Beta-4.5 and Sn-Beta-7.5 presented in Fig. S23 can be
divided into three stages. The first stage is at the temperature of < 200 °C,
corresponding to the desorption of physisorbed water.! The second stage is attributed
to the oxidation and decomposition of TEA®, which locates at temperature of < 410
°C.! The temperature of this stage for Sn-Beta samples with low crystallinity, such as
Sn-Beta-4.5-0.25, Sn-Beta-4.5-0.5, Sn-Beta-7.5-1 and Sn-Beta-7.5-3, is lower than

those with high crystallinity, which is at temperature of < 322 °C. The reason is



probably that the higher external surface and larger mesopore volume of the samples
with low crystallinity facilitate the combustion of TEA*. The third stage can be
ascribed to the desorption of water generated from silanol condensation. The weight
loss of each stage is listed in Table S1. The weight loss of TEA™ increases with the
crystallinity. It indicates more TEA™ species were occluded with the integration of
zeolite framework structure. The weight loss of water in the samples with low
crystallinity is much higher than the samples with high crystallinity, suggesting that
the samples with low crystallinity have more silanols and are more hydrophilic.
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