Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

NiCo₂O₄ with controllable oxygen vacancy concentration as high-efficient electrocatalyst

for oxygen evolution reaction

Shangzhi Yao^{a,b}, Haoshan Wei^{a,b}, Yong Zhang^{*a,b}, Xueru Zhang^c, Yan Wang^{a,b}, Jiaqin Liu^d, Hark

Hoe Tan^{e,f}, Ting Xie^b, Yucheng Wu*a,b

^a School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.

^bKey Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009,

China

^cInstrumental Analysis Center, Hefei University of Technology, Hefei 230009, China

^dInstitute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, Anhui, China

^eChina International S&T Cooperation Base for Advanced Energy and Environmental Materials, Hefei

230009, Anhui, China

^fDepartment of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia

Email:*Yong Zhang : zhangyong.mse@hfut.edu.cn *Yucheng Wu:ycwu@hfut.edu.cn

Figure S1. Field emission scanning electron microscope images (inset: magnified fracture images) and EDS mapping of NiCo₂O₄-OV-400.

Figure S2. XPS survey of as-prepared (a) P-NiCo₂O₄ and (b) NiCo₂O₄-OV-400 samples.

Figure S3. XPS spectra of Ni 2p in as-prepared NiCo₂O₄ nanobelts.

Figure S4. CVs of the double-layer capacitance measurement for the six different samples in 1 M KOH in the non-Faradaic region of 0.90-1.00 V vs. RHE with different scan rates, varying from 5 mV/s to 50 mV/s.

Figure S5. (a) SEM and (b) TEM of NiCo₂O₄-OV-400 after the long-time stability test (NCO-ST).

Figure S6. (a) XPS survey and (b) XPS spectrum of O 1s of NCO-ST.

Figure S7. (a) The polarization of OER and (b) chronoamperometry curves of as-prepared NiCo₂O₄-

OV-400 and RuO_2 electrode in 1 M KOH. The chronoamperometry curves of $NiCo_2O_4$ -OV-400 and RuO_2 for OER were tested at 1.55 V for 10 h.

Figure S8. CV curve of NiCo₂O₄-OV-400 at a scan rate of 10 mV/s (Inset was the corresponding high

Catalysts	Electrolyte	Substate	Overpotential	Tafel	References
			(mV)	(mV/dec)	
NiCo ₂ O ₄ -OV-400	1 M KOH	GC	325	71	This work
NiCo ₂ O ₄	1 M KOH	GC	399	83	This work
HU-NiCo ₂ O ₄	1 M	GC	419.3	51.3	33
	NaOH				
P-Co ₃ O ₄	1 M KOH	Ti Mesh	280	51.6	39
NiCo ₂ O ₄ (CH ₃ OH)	1 M KOH	GC	380	45.7	47
CoO _x -4h	1 M KOH	GC	306	65	48
NiCo-air	0.1 M	GC	440	75	53
	КОН				
NiCo ₂ O ₄ -400°C	1 M KOH	FTO	375	54	64
Co/NCO/NF	0.1 M	Ni foam	320	84	S1
	КОН				
NiCo ₂ O _{4-δ}	0.1 M	GC	390		S2
	KOH				
M-Co ₃ O ₄	0.1 M	GC	~370	89	S3
	KOH				

magnification image).

Table S1. A brief comparison of $NiCo_2O_4$ -OV-400 nanobelts with other spinel oxides in the recent literature for OER.

References

- S1. M. Yang, W. Lu, R. Jin, X.-C. Liu, S. Song and Y. Xing, ACS Sustainable Chem. Eng., 2019,
 7, 12214-12221.
- S2. I. Abidat, N. Bouchenafa-Saib, A. Habrioux, C. Comminges, C. Canaff, J. Rousseau, T. W. Napporn, D. Dambournet, O. Borkiewicz and K. B. Kokoh, J. Mater. Chem. A, 2015, 3, 17433-17444.
- S3. H. Sun, Y. Zhao, K. Mølhave, M. Zhang and J. Zhang, *Nanoscale*, 2017, 9, 14431-14441.