Electronic Supplementary Material

Remarkably improved hydrogen storage performance of MgH₂ by the synergetic effect of FeNi/rGO nanocomposite

Liang Ji*, Liuting Zhang*, Xinglin Yang*, Xinqiao Zhub, Lixin Chen*c,

*a School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
*b Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
*c State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Fig. S1 SEM photograph of commercial MgH₂.[1]

* To whom correspondence should be addressed. E-mail: zhanglt89@126.com
Fig. S2 Isothermal hydrogen absorption curves at 200 °C of as-synthesized MgH$_2$, MgH$_2$+5 wt% Fe, MgH$_2$+5 wt% FeCo, MgH$_2$+5 wt% FeNi/rGO samples.

@200 °C
Fig. S3 JMAK plots of as-synthesized MgH$_2$ with (a) and without (b) 5 wt% FeNi/rGO.
Fig. S4 SEM photograph of as-synthesized MgH$_2$.

Fig. S5 XRD patterns of dehydrogenated and rehydrogenated MgH$_2$+15 wt% FeNi/rGO.

References