Supplementary Information for:

Asymmetric Hydroboration of Ketones Catalyzed by Alkali Metal Complexes Derived from BINOL Ligands

Darren Willcox, Jamie L. Carden, Adam J. Ruddy, Paul D. Newman* and Rebecca L. Melen*

Contents

Ligand synthesis	2
General experimental for hydroboration of ketones using optimised procedure	3
Optimization tables for ketone hydroboration	3
Product characterization	4
Preliminary mechanistic investigations	7
NMR spectra	9
Chiral HPLC chromatographs	30
References	40

General experimental

All reactions were carried out under a nitrogen atmosphere using standard Schlenk and glove box techniques. With the exception of THF, all solvents used were dried by passing through an alumina column incorporated into an MB SPS-800 solvent purification system, degassed and stored in an ampoule fitted with a Teflon valve under a nitrogen atmosphere. THF was dried over molten potassium for three days and distilled over argon. Acetone was dried by stirring over magnesium sulphate under a nitrogen atmosphere for 18 hours. Anhydrous DMSO was purchased from Sigma Aldrich and used as received. Deuterated solvents were distilled and/or dried over molecular sieves and stored in a glove box before use. Pinacolborane and *R*-BINOL were purchased from Fluorochem and used as received. ¹H, ¹³C{¹H}, ¹¹B and ³¹P NMR spectra were recorded on a Bruker Avance 300, 400 or 500 MHz spectrometer. Chemical shifts are expressed as parts per million (ppm, δ) and are referenced to CDCl₃ (7.26/77.16 ppm) or DMSO (2.50/39.51 ppm). Multinuclear NMR spectra were referenced to BF₃-Et₂O (¹¹B), CFCl₃ (¹⁹F), and 85% H₃PO₄ (³¹P). The description of signals includes s = singlet, d = doublet, t = triplet, q = quartet, br = broad, and m = multiplet. All coupling constants are absolute values and are expressed in Hertz (Hz).

HPLC analyses was performed using an Aglient Technologies 1260 infinity system fitted with a LUX[®] 5 μ m Cellulose-1 column of dimensions 250 x 4.6 mm. Hexane/isopropanol was used as the mobile phase in 90:10 (unless otherwise stated) at a flow rate of 1 mL/min and the products were analysed at 254 nm.

Ligand synthesis

Ligand L1, L2, L3 and L4 were prepared according to the literature method.¹ Ligand L5 is commercially available, purchased from fluorochem and used as received. Ligand L6² and L7³ were prepared in accordance with literature procedures. The synthetic routes are depicted in scheme S1-3

Scheme S3 – Synthesis of ligand L7

General experimental for hydroboration of ketones using optimised procedure

A flame dried 5 mL microwave vial containing a magnetic stirring bar was charged with **L1** (11.7 mg, 0.025 mmol) and LDA (1.3 mg, 0.0125 mmol) in 1,4-dioxane (0.5 mL) This mixture was stirred at room temperature for 5 minutes. To this bright yellow solution was added pinacolborane (40 μ L, 0.275 mmol) followed by the ketone (0.25 mmol). The reaction mixture was then allowed to stir under a nitrogen atmosphere for 18 hours. After 18 hours the reaction was quenched with 1M NaOH (1M, 1 mL) and allowed to stir for 1 hour. The mixture was extracted with ether (3 x 5 mL) and the organic layer was dried (Na₂SO₄) and purified by flash column chromatography using 2:1 hexane/diethyl ether as the eluent.

Optimization tables for ketone hydroboration

All reactions were performed according to the general procedure above. **Table S1** – Base Screen:

Entry	Base	Yield (%) ^a	e.r (%) ^ь
1	NaO ^t Bu	94	70:30
2	LiO ^t Bu	99	70.30
3	KO ^t Bu	95	53:47
4	n-BuLi	95	71:29
5	LiHMDS	99	55:45
6	LiH	70	68:32
7	LDA	94	79:21
8	LiNH ₂	99	66:34

a) NMR yield using 1,1,2,2-tetrachloroethane as internal standard; b) measured using chiral HPLC

Table S2 – Solvent Screen:

Entry	Solvent	Yield (%) ^a	e.r (%) ^ь
1	1,4-dioxane	94	79:21
2	^t BuOMe	>99	65:35
3	Et ₂ O	99	65:35
4	THF	98	65:35
5	PhMe	96	50:50
6	CH_2CI_2	98	56:44

a) NMR yield using 1,1,2,2-tetrachloroethane as internal standard; b) measured using chiral HPLC

Table S3 – Borane screen:

Entry	Base	Yield (%) ^a	e.r (%) ^ь
1	HBPin	94	79:21
2	HBCat	98	56:44
3	BH_3 .HNMe ₂	54	53:47
4	HBCl ₂ .SMe ₂	6	N.D.

a) NMR yield using 1,1,2,2-tetrachloroethane as internal standard; b) measured using chiral HPLC

Scheme S4 – Ligand screen:

Product characterization

(S)-1-Phenylethanol (2a)⁴

OH

Prepared according to the general procedure using acetophenone (30 μ L, 0.25 mmol) to afford the title compound as a colorless oil (29 mg, 95%). Spectroscopic data agrees with the literature.

R*f* = 0.19 (hexane/ether 2:1); ¹**H** NMR (400 MHz, CDCl₃) δ_{H} : 7.41–7.32 (3H, m), 7.31–7.23 (2H, m), 4.91 (1H, q, *J* = 6.1 Hz), 1.79 (1H, s), 1.51 (3H, d, *J* = 6.5 Hz). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_{C} : 145.9, 128.6, 127.6, 125.5, 70.6, 25.3. **HPLC**: eluent 90:10 hexane/isopropanol: (*R*)-enantiomer: t_R = 6.69 min; (*S*)-enantiomer: t_R = 7.75 min. [α_d^{20}] = -0.04° (c = 1, CHCl₃).

(S)-1-(Naphthalen-1-yl)ethan-1-ol (2b)⁵

Prepared according to the general procedure using 1-acetylnaphthalene (38 μ L, 0.25 mmol) to afford the title compound as a colorless oil (33 mg, 77%). Spectroscopic data agrees with the literature.

Rf = 0.18 (hexane/ether 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ_{H} : 8.14–8.12 (1H, m), 7.91– 7.86 (1H, m), 7.80–7.78 (1H, m), 7.70–7.67 (1H, m), 7.56–7.46 (3H, m), 5.70 (1H, q, J

= 6.5 Hz), 1.90 (1H, s), 1.69 (3H, d, *J* = 6.5 Hz); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ_{c} : 141.5, 134.0, 130.4, 129.1, 128.1, 126.2, 125.7, 125.7, 123.3, 122.1, 67.3, 24.5; HPLC: eluent 80:20 hexane/isopropanol: (*S*)-enantiomer: t_R = 7.43 min; (*R*)-enantiomer: t_R = 12.53 min. [α_{d}^{20}] = -0.06° (c = 1, CHCl₃).

(S)-1-(4-Fluorophenyl)ethan-1-ol (2c)⁴

Prepared according to the general procedure using 4-fluoroacetophenone (31 μ L, 0.25 mmol) to afford the title compound as a colorless oil (31 mg, 88%). Spectroscopic data agrees with the literature.

R*f* = 0.20 (hexane/ether 2:1); ¹**H NMR** (500 MHz, CDCl₃) δ_H: 7.35–7.23 (2H, m), 6.98– 6.90 (2H, m), 4.80 (1H, q, *J* = 6.5 Hz), 1.93 (1H, s), 1.39 (3H, d, *J* = 6.5 Hz); ¹³**C**{¹**H**} **NMR** (101 MHz, CDCl₃) δ_C: 162.2 (d, *J* = 245.1 Hz), 141.6 (d, *J* = 3.1 Hz), 127.2 (d, *J* = 8.1 Hz), 115.4 (d, *J* = 21.3 Hz), 69.9, 25.4; ¹⁹F NMR (471 MHz, CDCl₃) δ_F: -115.35 (s). **HPLC**: eluent 90:10 hexane/isopropanol: (*S*)-enantiomer: t_R = 8.26 min; (*R*)-enantiomer: t_R = 8.63 min. [α_d^{20}] = -0.05° (c = 1, CHCl₃).

(S)-4-(1-Hydroxyethyl)benzonitrile (2d)⁶

Prepared according to the general procedure using 4-acetylbenzonitrile (36 mg, 0.25 mmol) to afford the title compound as a colorless oil (35 mg, 95%). Spectroscopic data agrees with the literature.

Rf = 0.13 (hexane/ether 1:1); ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.68–7.61 (2H, m), 7.51– 7.46 (2H, m), 4.97 (1H, q, *J* = 6.5 Hz), 1.93 (1H, s), 1.50 (3H, d, *J* = 6.5 Hz); ¹³C{¹**H**} **NMR** (126 MHz, CDCl₃) δ_{C} : 151.2, 132.5, 126.2, 119.0, 111.3, 69.8, 25.6; **HPLC**: eluent 95:5 hexane/isopropanol: (*S*)enantiomer: t_R = 18.75 min; (*R*)-enantiomer: t_R = 20.36 min. [α_{d}^{20}] = -0.12° (c = 1, CHCl₃).

(*S*)-1-(*p*-Tolyl)ethan-1-ol (**2e**)⁴

Prepared according to the general procedure using 4-acetyltoluene (34 μ L, 0.25 mmol) to afford the title compound as a colorless oil (30.6 mg, 90%). Spectroscopic data agrees with the literature.

Rf = 0.16 (hexane/ether 2:1); ¹**H NMR** (400 MHz, CDCl₃) δ_{H} : 7.29–7.25 (2H, m), 7.19–7.15 (1H, m), 4.86 (1H, q, *J* = 6.2 Hz), 2.35 (3H, s), 1.92 (1H, s), 1.49 (3H, d, *J* = 6.5 Hz);

¹³C{¹H} NMR (126 MHz, CDCl₃) δ_{c} : 143.9, 137.3, 129.3, 125.5, 70.4, 25.2, 21.2; HPLC: eluent 90:10 hexane/isopropanol: (*S*)-enantiomer: $t_{R} = 6.65$ min; (*R*)-enantiomer: $t_{R} = 7.09$ min. $[\alpha_{d}^{20}] = -0.03^{\circ}$ (c = 1, CHCl₃).

(S)-1-(*m*-Tolyl)ethan-1-ol (2f)⁷

Me

Prepared according to the general procedure using 3-methylacetophenone (34 μL, 0.25 mmol) to afford the title compound as a colorless oil (32 mg, 95%). Spectroscopic data agrees with the literature.

Rf = 0.22 (hexane/ether 2:1); ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.24 (1H, d, J = 7.5 Hz), 7.20–7.19 (1H, m), 7.18–7.16 (1H, m), 7.11–7.08 (1H, m), 4.87 (1H, q, J = 6.5 Hz), 2.36 (3H, s), 1.78 (1H, s), 1.49 (3H, d, J = 6.5 Hz); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_{C} : 145.9, 128.4 126.2 122.6 70.6 25.3 21.6; **HPIC**: eluent 90:10 becane/isopropanol: (*R*)-

138.3, 128.6, 128.4, 126.2, 122.6, 70.6, 25.3, 21.6; **HPLC**: eluent 90:10 hexane/isopropanol: (*R*)-enantiomer: $t_R = 6.32 \text{ min}$; (*S*)-enantiomer: $t_R = 7.21 \text{ min}$. $[\alpha_d^{20}] = -0.07^\circ$ (c = 1, CHCl₃).

(S)-1-(o-Tolyl)ethan-1-ol (2g)⁴

Prepared according to the general procedure using 2-methylacetophenone (34 μ L, 0.25 mmol) to afford the title compound as a colorless oil (16 mg, 47%). Spectroscopic data agrees with the literature.

 $\begin{array}{c} \mbox{ } \mbox{ } Rf = 0.32 \mbox{ (hexane/ether 2:1); } ^{1}\mbox{ } \mbox{ } \mbox{$

(S)-1-(4-Methoxyphenyl)ethan-1-ol (2h)⁶

Prepared according to the general procedure using 4-methoxyacetophenone (37.5 mg, 0.25 mmol) to afford the title compound as a colorless oil (23 mg, 60%). Spectroscopic data agrees with the literature.

MeO MeO f = 0.10 (hexane/ether 2:1); ¹H NMR (500 MHz, CDCl₃) δ_H: 7.33–7.28 (2H, m), 6.92–6.85 (2H, m), 4.86 (1H, q, J = 6.4 Hz), 3.81 (3H, s), 1.74 (1H, s), 1.48 (3H, d, J = 6.4 Hz); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_C: 159.0, 138.0, 126.7, 113.9, 70.0, 55.3, 25.0; HPLC: eluent 90:10 hexane/isopropanol: (*R*)-enantiomer: $t_R = 7.10$ min; (S)-enantiomer: $t_R = 7.99$ min. $[\alpha_d^{20}] = -0.03^{\circ}$ (c = 1, CHCl₃).

(S)-1-Phenylpropan-1-ol (2i)⁸

Prepared according to the general procedure using propiophenone (33 μ L, 0.25 mmol) to afford the title compound as a colorless oil (32 mg, 94%). Spectroscopic data agrees with the literature.

Rf = 0.21 (hexane/ether 2:1); ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.36–7.33 (4H, m), 7.31–

7.26 (1H, m), 4.60 (1H, dd, J = 7.1, 6.1 Hz), 1.87–1.72 (2H, m), 0.92 (3H, t, J = 7.4 Hz); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ_{C} : 144.7, 128.6, 127.7, 126.1, 76.2, 32.0, 10.3; HPLC: eluent 97.5:2.5 hexane/isopropanol: (*R*)-enantiomer: $t_{R} = 14.22$ min; (S)-enantiomer: $t_{R} = 15.22$ min. [α_{d}^{20}] = -0.04° (c = 1, CHCl₃).

(S)-Cyclohexyl(phenyl)methanol (2j)⁷

Prepared according to the general procedure using cyclohexyl phenyl Ketone (47 mg, 0.25 mmol) to afford the title compound as a colorless oil (34 mg, 71%). Spectroscopic data agrees with the literature.

Rf = 0.33 (hexane/ether 2:1); ¹**H NMR** (500 MHz, CDCl₃) δ_{H} : 7.54–6.99 (5H, m), 4.37 (1H, dd, *J* = 7.2, 2.9 Hz), 2.02–1.96 (1H, m), 1.82 (1H, d, *J* = 3.1 Hz), 1.79–1.75 (1H,

m), 1.71–1.58 (3H, m), 1.38 (1H, m), 1.29–0.85 (5H, m); ${}^{13}C{^{1}H} NMR$ (126 MHz, CDCl₃) δ_{c} : 143.8, 128.3, 127.6, 126.8, 79.5, 45.1, 29.5, 29.0, 26.6, 26.2, 26.1; HPLC: eluent 90:10 hexane/isopropanol: (S)-enantiomer: $t_{R} = 6.15$ min; (*R*)-enantiomer: $t_{R} = 7.63$ min. [α_{d}^{20}] = -0.02° (c = 1, CHCl₃).

Preliminary mechanistic investigations

Addition of LDA to ligand. In 1,4-dioxane with benzene- d_6 lock. To a 5 mL microwave vial was added (*R*)-**L1** (0.024 g, 0.10 mmol) and lithium diisopropylamide (0.036 mg, 0.10 mmol) in 1,4-dioxane (1.0 mL) and benzene- d_6 (0.25 mL). After 0.5 h, the resulting reaction mixture was examined by ¹H NMR spectroscopy using a presaturation method.

Figure S1 – (*R*)-**L1**

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

Figure S2 – (R)-L1 + LDA

Addition of Li-alkoxide to pinacolborane. In 1,4-dioxane with benzene- d_6 lock. To a 5 mL microwave vial was added (*R*)-L1 (0.024 g, 0.10 mmol) and lithium diisopropylamide (0.036 mg, 0.10 mmol) in 1,4-dioxane (1.0 mL) and benzene- d_6 (0.25 mL). After 0.5 h, pinacolborane (0.10 mmol) was added and the mixture stirred for a further 0.5 h. The resulting reaction mixture was examined by ¹¹B NMR spectroscopy.

NMR spectra Figure S5 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of **2a**

Figure S6 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2a

Figure S7 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of **2b**

Figure S8 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of **2b**

Figure S9 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of 2c

Figure S10 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2c

Figure S11 – ¹⁹F{¹H} (471 MHz, CDCl₃, 298 K) NMR spectrum of 2c

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												f1 (ppm)											

Figure S12 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of 2d

Figure S13 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2d

Figure S14 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of 2e

Figure S15 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2e

Figure S16 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of 2f

Figure S17 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2f

Figure S19 – ¹³C (126 MHz, CDCl₃, 298 K) NMR spectrum of **2g**

Figure S20 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of 2h

Figure S21 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2h

Figure S23 – ¹³C{¹H} (126 MHz, CDCl₃, 298 K) NMR spectrum of 2i

Figure S24 – ¹H (500 MHz, CDCl₃, 298 K) NMR spectrum of **2**j

Chiral HPLC chromatographs Figure S26 – HPLC chromatograph of 2a

889 Hat 386217 401.011			51×400 201010		
			Server 2 151/2		
7.5	, , , , , , , , , , , , , , , , , , ,	12.5	7.5	10	12.5

#	Time	Area	Height	Width	Area%	Symmetry
1	6.686	386.2	46	0.1398	49.060	1.024
2	7.192	401	42.9	0.1558	50.940	0.968

#	Time	Area	Height	Width	Area%	Symmetry
1	6.961	51.5	6.1	0.1418	20.396	1.139
2	7,754	201	19.4	0.1726	79.604	0.992

Figure S27 – HPLC chromatograph of 2b

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	7.239	4009.3	407.6	0.164	49.884	0.997	1	7.429	475.1	46.4	0.1706	64.871	1.069
2	11.824	4027.9	207.1	0.3242	50.116	0.91	2	12.534	257.3	12.3	0.3481	35.129	1.038

Figure S28 – HPLC chromatograph of 2c

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	8.397	1788.8	179.9	0.1657	50.590	1.018	1	8.258	565.5	59.2	0.1593	76.556	1.061
2	8.768	1747.1	168.8	0.1725	49.410	0.986	2	8.627	173.2	17.4	0.1659	23.444	1.046

Figure S29 – HPLC chromatograph of 2d

	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	18.306	889.5	32.1	0.4616	53.411	0.883	1	18.748	429.8	15.9	0.3989	75.567	0.854
2	19.934	775.9	28.8	0.4497	46.589	0.841	2	20.359	139	5.3	0.3889	24.433	1.003

Figure S30 – HPLC chromatograph of 2e

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	6.666	663.6	82.8	0.1335	49.772	0	1	6.653	303.4	38.3	0.132	71.682	1.037
2	7.127	669.7	75.7	0.1475	50.228	0.916	2	7.092	119.8	14	0.1431	28.318	1.064

Figure S31 – HPLC chromatographs of 2f

Figure S32 – HPLC chromatograph of 2g

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	6.335	171.1	20	0.1428	50.952	1.061	1	6.287	120.5	15.2	0.1318	37.853	1.117
2	6.658	164.7	20.2	0.1356	49.048	1.019	2	7.174	197.8	21.9	0.1503	62.147	1.064

Figure S33 – HPLC chromatographs of 2h

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	8.698	2469.2	220.2	0.1869	49.934	0.858	1	7.098	32.4	3.5	0.1524	24.805	0.998
2	9.662	2475.8	187.3	0.2203	50.066	0.726	2	7.986	98.1	9.9	0.1649	75.195	1.096

	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	14.054	382	25.6	0.2298	50.000	0.942	1	14.218	66.3	4.3	0.2545	26,402	1.086
2	14.928	382	24.1	0.2451	50.000	1.019	2	15.223	184.7	11.1	0.2775	73.598	1.083

Figure S35 – HPLC chromatographs of 2j

#	Time	Area	Height	Width	Area%	Symmetry		Time	Area	Height	Width	Area%	Symmetry
1	5.968	61.1	8.1	0.1158	49.534	1.068	1	6.151	68.7	7.8	0.1466	63.608	1.125
2	7.528	62.2	6.1	0.159	50.466	1.042	2	7.631	39.3	4	0.1657	36.392	1.049

References

- 1. a) Y. Uozumi, A. Tanahashi, S.-Y. Lee, T. Hayashi, *J. Org. Chem.*, 1993, **58**, 1945; b) T. V. RajanBabu, N. Nomura, J. Jin, M. Nandi, H. Park, X. Sun, *J. Org. Chem.*, 2003, **68**, 8431.
- 2. Y. Zhou, D. Zhang, L. Zhu, Z. Shuai and D. Zhu, J. Org. Chem., 2006, 71, 2123.
- 3. R. Hrdina, L. Guénée, D. Moraleda and J. Lacour, *Organometallics*, 2013, **32**, 473.
- 4. S. R. Tamang and M. Findlater, J. Org. Chem., 2017, 82, 12857.
- 5. V. K. Jakhar, M. K. Barman and Sharanappa Nembenna, Org. Lett., 2016, 18, 4710.
- 6. I. D. Alshakova and G. I. Nikonov, *Synthesis*, 2019, **51**, 3305.
- 7. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr and T. J. Marks, ACS Catal., 2017, 7, 1244.
- 8. K. Kuciński and G. Hreczycho, Green Chem., 2019, 21, 1912.