Electronic Supplementary Information

Rapid Fabrication of Oxygen Defective α-Fe$_2$O$_3$(110) for Enhanced Photoelectrochemical Activities

Mohamad Firdaus Mohamad Noha,*, Habib Ullahb,*, Nurul Afliqah Arzaeea, Azhar Ab Halima,c, Muhammad Amir Faizal Abdul Rahima,c, Nurul Aida Mohameda, Javad Safaeid, Siti Nur Farhana Mohd Nasira, Guoxiu Wangd, Mohd Asri Mat Teridia,*

aSolar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
bRenewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, United Kingdom.
cSchool of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
dCentre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007 Australia.

*Corresponding author: fir.noh@gmail.com (Mohamad Firdaus Mohamad Noh)
hu203@exeter.ac.uk (Habib Ullah)
asri@ukm.edu.my (Mohd Asri Mat Teridi)
Figure S1. XPS survey spectra of Fe₂O₃(110) and Oᵥ_Fe₂O₃(110).

Figure S2. TEM images of (a) Fe₂O₃(110) and (b) Oᵥ_Fe₂O₃(110). The circles show the presence of oxygen vacancies in crystal lattice.

Crystallite size calculation

The following Scherrer equation was used for the calculation of crystallite size, D:

\[
D = \frac{K\lambda}{\beta \cos \theta}
\]

(Eq. S1)

where K is the shape factor with a value of 0.9, λ is the wavelength of X-ray, β is the full-width at half maximum (FWHM) of the XRD peak and θ is the Bragg angle.
Transient time calculation

Figure S3. Ln D vs. time graph for the determination of transient time of Fe$_2$O$_3$(110) and O$_{v}$Fe$_2$O$_3$(110) samples.

Figure S2 was derived from Figure 5(b) using the following equations:

\[D = \frac{I_t - I_f}{I_i - I_f} \quad (Eq. \ S2) \]
\[\tau = - t \ln D \quad (Eq. \ S3) \]

where \(\tau \) is the transient time constant at which \(\ln D = -1 \); \(I_t \) is the current at time \(t \); \(I_i \) and \(I_f \) are the initial current (i.e. maximum current right after light is on) and final current (i.e. minimum current right before light is off), respectively.
Figure S4. Current-time (I-t) graph of photoelectrochemical cells for $O_{\nu}Fe_2O_3(110)$ photoanode measured at 1.2 $V_{Ag/AgCl}$ bias voltage under light illumination.

Figure S5. Photoelectrochemical performance of four different samples of (a) Fe$_2$O$_3$(110) and (b) $O_{\nu}Fe_2O_3(110)$ measured from front under light illumination.
Figure S6. AFM images of Fe$_2$O$_3$ (110) film deposited via AACVD for (a) 10 min, (b) 20 min, (c) 40 min and (d) 60 min.

Figure S7. FESEM images of Fe$_2$O$_3$ (110) deposited for (a) 10 min and (b) 40 min. Prolonging the deposition time converts the structure of α-Fe$_2$O$_3$ film from nanoflakes to nanoflowers.