Supporting Information

A frontier Zn- and N-rich complex grafted onto reduced graphene oxide for electrocatalyst of dye-sensitized solar cells

Yuan-Hsiang Yu^{a,*}, Wun-Shiuan Wang^a, Yu-Chung Hu^a, Xiao-Yuan Lin^a, Chih-Hung Tsai^b, Chun-Jyun Shih^b, Wei-Chih Huang^b, Shie-Ming Peng^c, and Gene-Hsiang Lee^c ^a Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan

^b Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 97401, Taiwan

^c Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

*Corresponding authors. E-mail addresses: <u>084916@mail.fju.edu.tw</u>

Empirical formula	$C_{10}H_{20.5}B_{1.5}F_6N_8O_{0.5}Zn$		
Formula weight	456.43		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 25.4632(6) Å	α= 90°	
	b = 10.9818(3) Å	β=	
127.9356(8)°			
	c = 15.7522(4) Å	$\gamma = 90^{\circ}$	
Volume	3474.09(16) Å ³		
Ζ	8		
Density (calculated)	1.745 mg/m^3		
Absorption coefficient	1.492 mm^{-1}		
F(000)	1856		
Crystal size	0.128 x 0.088 x 0.057 mm	n ³	
Theta range for data collection	2.028 to 27.492°		
Index ranges	$-32 \le h \le 32, -14 \le k \le 14,$	$-19 \le l \le 20$	
Reflections collected	13171		
Independent reflections	3965 [R(int) = 0.0185]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7456 and 0.7108		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	3965 / 20 / 299		
Goodness-of-fit on F ²	1.076		
Final R indices [I>2sigma(I)]	$R_1 = 0.0233$, $wR_2 = 0.0557$		
R indices (all data)	$R_1 = 0.0295, wR_2 = 0.0606$		
Largest diff. peak and hole	0.374 and -0.310 e^{-3}		

Table 1S. The crystallographic parameters of macrocyclic zinc complex, $\{[Zn(C_{10}H_{20}N_8)]_2(OH)\}(BF_4)_3$.

Table 28. Selected bon	id lengths and angles	s of $\{[Zn(C_{10}H_{20}N_8)]\}$	$2(OH) (BF_4)_3$
	bond lengths (Å)		bond angles (°)
Zn-O(1)	1.9342(5)	Zn-O(1)-ZnA	143.89(9)
O(1)-ZnA	1.9342(5)	O(1)-Zn-N(4)	115.23(4)
Zn-N(1)	2.1117(14)	O(1)-Zn-N(8)	111.36(4)
Zn-N(4)	2.0938(13)	O(1)-Zn-N(5)	119.21(6)
Zn-N(5)	2.1060(13)	O(1)-Zn-N(1)	112.64(6)
Zn-N(8)	2.0994(13)	N(4)-Zn-N(8)	133.27(5)
N(1)-C(6)	1.293(2)	N(5)-Zn-N(1)	128.15(5)
N(4)-C(2)	1.283(2)	N(4)-Zn-N(5)	76.27(5)
N(5)-C(3)	1.290(2)	N(8)-Zn-N(5)	84.60(5)
N(8)-C(5)	1.288(2)	N(4)-Zn-N(1)	83.12(5)
N(1)-N(2)	1.366(2)	N(8)-Zn-N(1)	76.00(5)
N(3)-N(4)	1.3921(19)	N(1)-N(2)-C(1)	114.76(14)
N(5)-N(6)	1.3726(19)	N(4)-N(3)-C(1)	110.84(12)
N(7)-N(8)	1.3827(19)	N(5)-N(6)-C(4)	113.41(13)
N(2)-C(1)	1.452(2)	N(8)-N(7)-C(4)	112.31(13)
N(3)-C(1)	1.458(2)	N(2)-C(1)-N(3)	115.21(14)
N(6)-C(4)	1.455(2)	N(6)-C(4)-N(7)	117.05(14)
N(7)-C(4)	1.460(2)	N(1)-C(6)-C(5)	114.59(14)
C(2)-C(3)	1.495(2)	N(4)-C(2)-C(3)	115.15(14)
C(5)-C(6)	1.491(2)	N(5)-C(3)-C(2)	115.04(14)
C(2)-C(7)	1.492(2)	N(8)-C(5)-C(6)	115.89(14)
C(3)-C(8)	1.497(2)	N(2)-N(1)-Zn	119.69(11)
C(5)-C(9)	1.492(2)	N(3)-N(4)-Zn	122.26(10)
C(6)-C(10)	1.495(2)	N(6)-N(5)-Zn	121.32(10)
		N(7)-N(8)-Zn	121.99(10)

Table 2S. Selected bond le	engths and an	gles of {[Zn	$(C_{10}H_{20}N_8)$	(OH) (BF ₄) ₃	
	0	0	$(-10^{-2}0^{-3}0)$	2(7)(7)	

Symmetry transformations used to generate equivalent atoms: -x+1,y,-z+1/2

	Х	У	Z	U(eq)
Zn	5825(1)	4897(1)	3826(1)	14(1)
O(1)	5000	5443(1)	2500	15(1)
N(1)	5802(1)	3037(1)	4142(1)	17(1)
N(2)	5869(1)	2167(1)	3595(1)	27(1)
N(3)	6455(1)	3309(1)	3062(1)	19(1)
N(4)	6552(1)	4308(1)	3689(1)	16(1)
N(5)	6607(1)	6151(1)	4771(1)	15(1)
N(6)	6580(1)	7033(1)	5360(1)	19(1)
N(7)	5817(1)	5989(1)	5609(1)	18(1)
N(8)	5771(1)	4919(1)	5104(1)	16(1)
C(1)	5863(1)	2628(2)	2725(1)	20(1)
C(2)	7120(1)	4840(2)	4296(1)	16(1)
C(3)	7166(1)	5839(2)	4984(1)	17(1)
C(4)	5956(1)	7040(2)	5208(1)	19(1)
C(5)	5798(1)	3879(2)	5506(1)	17(1)
C(6)	5790(1)	2790(2)	4933(1)	18(1)
C(7)	7712(1)	4461(2)	4379(2)	24(1)
C(8)	7833(1)	6332(2)	5896(1)	23(1)
C(9)	5875(1)	3755(2)	6520(1)	23(1)
C(10)	5811(1)	1535(2)	5320(2)	30(1)
B(1)	7406(1)	8846(2)	7865(2)	23(1)
F(1)	7622(1)	7919(1)	7540(1)	34(1)
F(2)	7747(1)	9909(1)	8030(1)	29(1)
F(3)	6726(1)	9014(1)	7090(1)	38(1)
F(4)	7531(1)	8487(1)	8826(1)	34(1)
B(2)	5070(5)	-884(4)	2494(7)	39(2)
F(5)	4874(3)	-2059(2)	2559(5)	54(1)
F(6)	5162(5)	-190(6)	3257(6)	43(1)
F(7)	4505(10)	-400(20)	1559(14)	91(3)
F(8)	5367(8)	-325(13)	2105(13)	88(2)
F(6')	5654(4)	-471(8)	3500(5)	43(1)
F(7')	4460(5)	-316(11)	1996(10)	91(3)
F(8')	5227(4)	-936(9)	1804(7)	88(2)

Table 3S. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for {[Zn(C₁₀H₂₀N₈)]₂(OH)}(BF₄)₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

		B(2)-F(7)	1.385(10)
Zn-O(1)	1.9342(5)	B(2)-F(7')	1.385(9)
Zn-N(4)	2.0938(13)	B(2)-F(5)	1.410(5)
Zn-N(8)	2.0994(13)	B(2)-F(6')	1.425(7)
Zn-N(5)	2.1060(13)	F(5)-F(5)#1	0.769(7)
Zn-N(1)	2.1117(14)	F(5)-B(2)#1	1.306(5)
O(1)-Zn#1	1.9342(5)	F(5)-F(8')#1	1.707(9)
N(1)-C(6)	1.293(2)	F(6)-F(7)#1	0.74(2)
N(1)-N(2)	1.366(2)	F(6)-F(8)#1	1.103(15)
N(2)-C(1)	1.452(2)	F(6)-B(2)#1	1.212(11)
N(3)-N(4)	1.3921(19)	F(7)-F(6)#1	0.74(2)
N(3)-C(1)	1.458(2)	F(7)-B(2)#1	1.303(19)
N(4)-C(2)	1.283(2)	F(8)-F(6)#1	1.103(15)
N(5)-C(3)	1.290(2)	F(8)-B(2)#1	1.697(13)
N(5)-N(6)	1.3726(19)	F(6')-F(7')#1	0.667(13)
N(6)-C(4)	1.455(2)	F(6')-B(2)#1	1.583(15)
N(7)-N(8)	1.3827(19)	F(7')-F(6')#1	0.667(13)
N(7)-C(4)	1.460(2)	F(7')-B(2)#1	1.133(13)
N(8)-C(5)	1.288(2)	F(7')-F(8')#1	1.679(12)
C(2)-C(7)	1.492(2)	F(8')-F(7')#1	1.680(12)
C(2)-C(3)	1.495(2)	F(8')-B(2)#1	1.683(10)
C(3)-C(8)	1.497(2)	F(8')-F(5)#1	1.707(9)
C(5)-C(6)	1.491(2)		
C(5)-C(9)	1.492(2)	O(1)-Zn-N(4)	115.23(4)
C(6)-C(10)	1.495(2)	O(1)-Zn-N(8)	111.36(4)
B(1)-F(2)	1.382(2)	N(4)-Zn-N(8)	133.27(5)
B(1)-F(3)	1.387(2)	O(1)-Zn-N(5)	119.21(6)
B(1)-F(1)	1.395(2)	N(4)-Zn-N(5)	76.27(5)
B(1)-F(4)	1.399(2)	N(8)-Zn-N(5)	84.60(5)
B(2)-B(2)#1	0.371(15)	O(1)-Zn-N(1)	112.64(6)
B(2)-F(7')#1	1.133(13)	N(4)-Zn-N(1)	83.12(5)
B(2)-F(6)#1	1.212(10)	N(8)-Zn-N(1)	76.00(5)
B(2)-F(7)#1	1.303(19)	N(5)-Zn-N(1)	128.15(5)
B(2)-F(5)#1	1.306(5)	Zn-O(1)-Zn#1	143.89(9)
B(2)-F(6)	1.318(7)	C(6)-N(1)-N(2)	123.21(15)
B(2)-F(8')	1.370(8)	C(6)-N(1)-Zn	116.73(11)
B(2)-F(8)	1.375(9)	N(2)-N(1)-Zn	119.69(11)

Table 4S. Bond lengths [Å] and angles [°] of all data for $\{[Zn(C_{10}H_{20}N_8)]_2(OH)\}(BF_4)_3$.

N(1)-N(2)-C(1)	114.76(14)	114.76(14) F(7')#1-B(2)-F(5)#1	
N(4)-N(3)-C(1)	110.84(12)	110.84(12) F(6)#1-B(2)-F(5)#1	
C(2)-N(4)-N(3)	120.99(14)	120.99(14) F(7)#1-B(2)-F(5)#1	
C(2)-N(4)-Zn	116.41(11)	B(2)#1-B(2)-F(6)	66(2)
N(3)-N(4)-Zn	122.26(10)	F(6)#1-B(2)-F(6)	103.4(8)
C(3)-N(5)-N(6)	121.15(14)	F(7)#1-B(2)-F(6)	32.9(10)
C(3)-N(5)-Zn	115.00(11)	F(5)#1-B(2)-F(6)	131.6(7)
N(6)-N(5)-Zn	121.32(10)	B(2)#1-B(2)-F(8')	144(3)
N(5)-N(6)-C(4)	113.41(13)	F(7')#1-B(2)-F(8')	83.7(8)
N(8)-N(7)-C(4)	112.31(13)	F(5)#1-B(2)-F(8')	79.2(6)
C(5)-N(8)-N(7)	120.66(14)	B(2)#1-B(2)-F(8)	147(2)
C(5)-N(8)-Zn	116.50(11)	F(6)#1-B(2)-F(8)	50.0(8)
N(7)-N(8)-Zn	121.99(10)	F(7)#1-B(2)-F(8)	91.7(12)
N(2)-C(1)-N(3)	115.21(14)	F(5)#1-B(2)-F(8)	107.6(8)
N(4)-C(2)-C(7)	123.62(15)	F(6)-B(2)-F(8)	108.0(7)
N(4)-C(2)-C(3)	115.15(14)	B(2)#1-B(2)-F(7)	70(3)
C(7)-C(2)-C(3)	121.13(15)	F(6)#1-B(2)-F(7)	32.4(10)
N(5)-C(3)-C(2)	115.04(14)	F(7)#1-B(2)-F(7)	130(2)
N(5)-C(3)-C(8)	124.95(15)	F(5)#1-B(2)-F(7)	113.3(13)
C(2)-C(3)-C(8)	119.84(14)	F(6)-B(2)-F(7)	103.4(12)
N(6)-C(4)-N(7)	117.05(14)	F(8)-B(2)-F(7)	81.4(13)
N(8)-C(5)-C(6)	115.89(14)	B(2)#1-B(2)-F(7')	41.1(19)
N(8)-C(5)-C(9)	122.70(15)	F(7')#1-B(2)-F(7')	118.7(12)
C(6)-C(5)-C(9)	121.30(15)	F(5)#1-B(2)-F(7')	122.5(9)
N(1)-C(6)-C(5)	114.59(14)	F(8')-B(2)-F(7')	110.0(9)
N(1)-C(6)-C(10)	124.74(16)	B(2)#1-B(2)-F(5)	66.3(3)
C(5)-C(6)-C(10)	120.56(15)	F(7')#1-B(2)-F(5)	136.0(10)
F(2)-B(1)-F(3)	110.68(16)	F(6)#1-B(2)-F(5)	131.6(8)
F(2)-B(1)-F(1)	110.00(15)	F(7)#1-B(2)-F(5)	112.0(13)
F(3)-B(1)-F(1)	109.54(15)	F(5)#1-B(2)-F(5)	32.6(3)
F(2)-B(1)-F(4)	109.64(15)	F(6)-B(2)-F(5)	109.6(6)
F(3)-B(1)-F(4)	108.68(15)	F(8')-B(2)-F(5)	108.0(6)
F(1)-B(1)-F(4)	108.25(16)	F(8)-B(2)-F(5)	139.2(8)
B(2)#1-B(2)-F(7')#1	126(2)	F(7)-B(2)-F(5)	104.3(13)
B(2)#1-B(2)-F(6)#1	98(2)	F(7')-B(2)-F(5)	97.4(7)
B(2)#1-B(2)-F(7)#1	95(3)	B(2)#1-B(2)-F(6')	109(3)
F(6)#1-B(2)-F(7)#1	115.0(13)	F(7')#1-B(2)-F(6')	27.3(7)
B(2)#1-B(2)-F(5)#1	98.6(4)	F(5)#1-B(2)-F(6')	107.8(7)

F(8')-B(2)-F(6')	106.4(7)	B(2)-F(8)-B(2)#1 6.9(5)	
F(7')-B(2)-F(6')	121.7(8)	F(7')#1-F(6')-B(2)	51.1(10)
F(5)-B(2)-F(6')	112.6(7)	F(7')#1-F(6')-B(2)#1	60.7(11)
F(5)#1-F(5)-B(2)#1	81.1(4)	B(2)-F(6')-B(2)#1	12.8(5)
F(5)#1-F(5)-B(2)	66.2(3)	F(6')#1-F(7')-B(2)#1	101.5(13)
B(2)#1-F(5)-B(2)	15.1(6)	F(6')#1-F(7')-B(2)	94.4(15)
F(5)#1-F(5)-F(8')#1	126.2(6)	B(2)#1-F(7')-B(2)	12.4(6)
B(2)#1-F(5)-F(8')#1	52.0(4)	F(6')#1-F(7')-F(8')#1	141.1(16)
B(2)-F(5)-F(8')#1	64.5(4)	B(2)#1-F(7')-F(8')#1	54.2(6)
F(7)#1-F(6)-F(8)#1	154(2)	B(2)-F(7')-F(8')#1	65.8(6)
F(7)#1-F(6)-B(2)#1	86.7(12)	B(2)-F(8')-F(7')#1	42.1(5)
F(8)#1-F(6)-B(2)#1	72.7(8)	B(2)-F(8')-B(2)#1	7.5(7)
F(7)#1-F(6)-B(2)	72.4(14)	F(7')#1-F(8')-B(2)#1	48.7(4)
F(8)#1-F(6)-B(2)	88.6(9)	B(2)-F(8')-F(5)#1	48.7(3)
B(2)#1-F(6)-B(2)	16.2(7)	F(7')#1-F(8')-F(5)#1	76.7(5)
F(6)#1-F(7)-B(2)#1	74.7(13)	B(2)#1-F(8')-F(5)#1	49.1(3)
F(6)#1-F(7)-B(2)	60.9(10)		
B(2)#1-F(7)-B(2)	15.5(7)	Symmetry transformations used to generate	
F(6)#1-F(8)-B(2)	57.3(7)	equivalent atoms:	
F(6)#1-F(8)-B(2)#1	50.9(5)	#1 -x+1,y,-z+1/2	

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Zn	13(1)	16(1)	11(1)	-1(1)	6(1)	0(1)
O(1)	14(1)	13(1)	12(1)	0	5(1)	0
N(1)	19(1)	16(1)	16(1)	-2(1)	11(1)	-1(1)
N(2)	47(1)	15(1)	31(1)	-4(1)	30(1)	-3(1)
N(3)	17(1)	21(1)	17(1)	-2(1)	10(1)	3(1)
N(4)	18(1)	18(1)	12(1)	1(1)	9(1)	2(1)
N(5)	17(1)	14(1)	13(1)	0(1)	9(1)	-1(1)
N(6)	18(1)	18(1)	16(1)	-5(1)	9(1)	-3(1)
N(7)	20(1)	22(1)	14(1)	-4(1)	10(1)	0(1)
N(8)	14(1)	20(1)	12(1)	-3(1)	7(1)	-1(1)
C(1)	21(1)	21(1)	16(1)	-4(1)	10(1)	0(1)
C(2)	16(1)	19(1)	14(1)	5(1)	9(1)	2(1)
C(3)	17(1)	18(1)	14(1)	3(1)	9(1)	-2(1)
C(4)	20(1)	18(1)	18(1)	-2(1)	10(1)	2(1)
C(5)	13(1)	24(1)	14(1)	1(1)	8(1)	-1(1)
C(6)	16(1)	19(1)	18(1)	1(1)	10(1)	-1(1)
C(7)	18(1)	30(1)	25(1)	-1(1)	14(1)	0(1)
C(8)	17(1)	26(1)	21(1)	-1(1)	9(1)	-5(1)
C(9)	26(1)	30(1)	18(1)	2(1)	16(1)	1(1)
C(10)	44(1)	22(1)	34(1)	3(1)	30(1)	-2(1)
B(1)	22(1)	24(1)	20(1)	-5(1)	12(1)	-5(1)
F(1)	34(1)	35(1)	32(1)	-14(1)	19(1)	-3(1)
F(2)	31(1)	27(1)	25(1)	-3(1)	16(1)	-10(1)
F(3)	22(1)	41(1)	34(1)	-8(1)	10(1)	-4(1)
F(4)	49(1)	29(1)	27(1)	-6(1)	25(1)	-13(1)
B(2)	36(4)	25(2)	57(3)	-11(4)	28(3)	-8(3)
F(5)	84(4)	14(1)	39(2)	2(1)	24(2)	-2(1)
F(6)	55(3)	29(2)	29(2)	-17(2)	17(2)	-10(2)
F(7)	87(5)	61(4)	139(7)	46(5)	77(5)	30(3)
F(8)	94(4)	110(6)	93(4)	-30(4)	73(4)	-20(4)
F(6')	55(3)	29(2)	29(2)	-17(2)	17(2)	-10(2)
F(7')	87(5)	61(4)	139(7)	46(5)	77(5)	30(3)

Table 5S.Anisotropic displacement parameters $(Å^2 x 10^3)$ for $\{[Zn(C_{10}H_{20}N_8)]_2(OH)\}(BF_4)_3$. Theanisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(1)	5000	6189(9)	2500	32(9)
H(2)	5759(11)	1470(20)	3590(18)	32(6)
H(3)	6796(10)	2880(18)	3352(16)	18(5)
H(6)	6930(10)	7065(18)	6022(17)	19(5)
H(7)	6071(10)	5937(18)	6284(18)	21(5)
H(1A)	5470	3162	2264	24
H(1B)	5809	1931	2278	24
H(4A)	5588	7118	4428	23
H(4B)	5948	7777	5562	23
H(7C)	7950	3811	4915	36
H(7D)	8010	5160	4597	36
H(7E)	7567	4162	3678	36
H(8A)	7774	7081	6166	35
H(8B)	8093	6510	5642	35
H(8C)	8070	5728	6476	35
H(9A)	6337	3928	7138	35
H(9B)	5760	2924	6577	35
H(9C)	5578	4333	6512	35
H(10A)	5731	937	4790	45
H(10B)	5466	1455	5414	45
H(10C)	6249	1389	6009	45

Table 6S. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for $\{[Zn(C_{10}H_{20}N_8)]_2(OH)\}(BF_4)_3$.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)F(5)#2	0.820(10)	1.962(10)	2.771(3)	168.70(12)
O(1)-H(1)F(5)#3	0.820(10)	1.962(10)	2.771(3)	168.70(12)
N(2)-H(2)F(6)	0.81(2)	2.22(3)	3.008(8)	163(2)
N(2)-H(2)F(7)#1	0.81(2)	2.13(3)	2.93(2)	173(2)
N(2)-H(2)F(6')	0.81(2)	2.14(3)	2.935(9)	165(2)
N(2)-H(2)F(7')#1	0.81(2)	2.09(3)	2.836(10)	152(2)
N(3)-H(3)F(4)#4	0.84(2)	2.14(2)	2.9648(18)	167.9(19)
N(6)-H(6)F(1)	0.86(2)	2.13(2)	2.9287(19)	155.0(18)
N(7)-H(7)N(3)#5	0.84(2)	2.47(2)	3.232(2)	150.6(18)
C(1)-H(1A)N(1)#1	0.99	2.57	3.390(2)	140.5
C(4)-H(4A)F(5)#2	0.99	2.49	3.442(6)	160.8
C(4)-H(4B)F(3)	0.99	2.39	3.191(2)	137.8
C(7)-H(7C)N(2)#6	0.98	2.65	3.501(3)	145.2
C(7)-H(7E)F(2)#7	0.98	2.51	3.285(2)	136.4
C(8)-H(8A)F(1)	0.98	2.59	3.428(2)	143.5
C(9)-H(9A)F(1)#8	0.98	2.62	3.273(2)	124.4
C(10)-H(10A)F(6)	0.98	2.27	3.205(6)	158.9
C(10)-H(10A)F(7)#1	0.98	2.34	3.314(19)	176.3
C(10)-H(10A)F(6')	0.98	2.46	3.437(7)	173.1

Table 7S. Hydrogen bonds for $\{[Zn(C_{10}H_{20}N_8)]_2(OH)\}(BF_4)_3$ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2 #2 x,y+1,z #3 -x+1,y+1,-z+1/2 #4 x,-y+1,z-1/2 #5 x,-y+1,z+1/2 #6 -x+3/2,-y+1/2,-z+1 #7 -x+3/2,-y+3/2,-z+1 #8 -x+3/2,y-1/2,-z+3/2

(b)

(c)

Figure 1S. Crystal packing diagrams of ${[Zn(C_{10}H_{20}N_8)]_2(OH)}(BF_4)_3$ viewed

perpendicular to (a) ab plane, (b) ac plane, and (c) bc plane.