Supporting Information

S1. Synthetic Details	2
S2. X-Ray Diffraction Studies	19
S3. Theoretical Details	21
S4. References	

S1. Synthetic Details

General: All manipulations were performed under an inert atmosphere of dry nitrogen, using standard Schlenk techniques. Dry, oxygen-free solvents were employed unless otherwise mentioned. The compound **1** were prepared following our recent procedure,^{S1} while all other starting materials were purchased from commercial sources. NMR spectra were recorded on Bruker Avance 400 MHz spectrometers (¹H, 400.1 MHz; ¹³C, 100.5 MHz; ³¹P, 161.9 MHz). All spectra were obtained in the solvent indicated at 25 °C. The chemical shifts (δ) were measured according to IUPAC and expressed in ppm relative to SiMe₄ (¹H, ¹³C), and 85% H₃PO₄ (³¹P). Coupling constants *J* are reported in Hertz [Hz] as absolute values. Because of high sensitivity of these compounds or the contamination of solvents, the elemental analyses gave unsatisfying results with errors larger than 5 %. The high purity of these isolated compounds has been proved mainly by NMR spectra. UV/vis spectra were measured on Buchi M-560 apparatus.

Preparation of 2: Phenylacetylene (15.2 mg, 0.15 mmol) in THF (1 mL) was added to a stirred solution of 1 (86.7 mg, 0.1 mmol) in THF (3 mL) at room temperature. After stirring for 1 hour, the solvent was removed under reduced pressure. The remaining solid was washed with acetonitrile, then with hexane and dried in vacuo to afford yellowish powder as 2 (79.4 mg, 0.08 mmol, 81.9% yield). Yellowish crystals of 2 were obtained from a saturated hexane and diethyl ether solution via slow evaporation. M. P. = 228 °C (Decomposition). ¹H NMR (C₆D₆, 400 MHz): $\delta = 7.55$ (d, J = 6.8 Hz, 2 H, C_{ar}H), 7.21 (m, 6 H, C_{ar}H), 7.10 (m, 9 H, C_{ar}H), 5.90 $(dd, {}^{1}J_{PH} = 150.0 \text{ Hz}, {}^{3}J_{PH} = 11.6 \text{ Hz}, 1 \text{ H}, PH), 3.35 (m, 16 \text{ H}, \text{NC}H_2, \text{CHMe}_2), 1.53 (d, J = 6.0 \text{ Hz})$ Hz, 6 H, CH_3), 1.40 (m, 18 H, CH_3), 1.23 (d, J = 6.0 Hz, 12 H, CH_3), 1.13 (d, J = 5.6 Hz, 12 H, CH₃); ${}^{13}C{}^{1}H$ NMR (C₆D₆, 100.5 MHz): $\delta = 151.5$ (dd, ${}^{2}J_{PC} = 19.2$ Hz, ${}^{2}J_{PC} = 16.2$ Hz, PCC), 150.0 (s, C_{ar}), 149.5 (d, J_{PC} = 4.8 Hz, C_{ar}), 148.7 (d, J_{PC} = 3.8 Hz, C_{ar}), 148.4 (s, C_{ar}), 148.2 (s, C_{ar}), 138.7 (s, C_{ar}), 136.2 (d, J_{PC} = 3.7 Hz, C_{ar}), 131.4 (s, C_{ar}), 128.1 (s, C_{ar}), 128.0 (s, C_{ar}), 127.8 (s, Car), 126.9 (s, Car), 126.6 (s, Car), 124.1 (s, Car), 123.9 (s, Car), 123.5 (s, Car), 123.4 (s, Car), 103.0 (d, ${}^{2}J_{PC} = 16.6$ Hz, PCCPh), 98.5 (d, ${}^{1}J_{PC} = 91.8$ Hz, PCCPh), 52.1 (s, NCH₂), 51.1 (s, NCH₂), 48.1 (dd, ${}^{1}J_{PC} = 8.3$ Hz, ${}^{1}J_{PC} = 5.1$ Hz, PCC), 28.5, 28.5, 28.2, 28.0, 25.8, 24.9, 23.7, 23.6, 23.5, 23.2; ³¹P NMR (C₆D₆, 161.9 MHz) δ = 58.1 (dd, ²J_{PP} = 13.4 Hz, ³J_{PH} = 11.6 Hz, *P*CPH), 36.2 (dd, ${}^{2}J_{PP} = 13.4$ Hz, ${}^{1}J_{PH} = 150.0$ Hz, *P*CPH). UV/Vis (CH₂Cl₂, λ (nm) ϵ (M⁻¹cm⁻ ¹)): 287.3 (23257). IR (ATR, [cm⁻¹]): 2166.6 (PH).

Figure S1. ¹H NMR spectrum of **2** in C_6D_6 .

Figure S2. ¹³C{¹H} NMR spectrum of 2 in C_6D_6 .

Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in C₆D₆.

Figure S4. ³¹P NMR spectrum of **2** in C_6D_6 .

Preparation of 3: Malononitrile (6.6 mg, 0.10 mmol) in THF (1 mL) was added dropwise to a stirred solution of **1** (86.8 mg, 0.10 mmol) in THF (4 mL). After stirring for 2 hours at room temperature, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford **3** as orange powder (0.088 mmol, 87.9% yield). Orange crystals were obtained from a fluorobenzene solution layered with hexane on top and stored at -30 °C. M. P. = 232 °C. ¹H NMR (CD₂Cl₂, 400 MHz): $\delta = 7.38$ (m, 4 H, C_{ar}*H*), 7.08 (m, 8 H, C_{ar}*H*), 4.93 (dd, 1 H, ¹*J*_{PH} = 183.2 Hz, P*H*; ³*J*_{PH} = 21.2 Hz, *P*CP*H*), 4.06 (m, 8 H, C*H*₂), 2.86 (m, 8 H, C*H*Me₂), 1.26 (m, 24 H, C*H*₃), 1.06 (m, 24 H, C*H*₃); ¹³C{¹H} NMR (CD₂Cl₂, 100.5 MHz): $\delta = 162.1$ (t, ²*J*_{PC} = 10.2 Hz, PCC), 147.3 (Car), 147.0 (Car), 132.1 (Car), 130.7 (Car), 125.4 (Car), 125.2 (Car), 121.8 (dd, ¹*J*_{PC} = 47.4 Hz, ¹*J*_{PC} = 5.4 Hz, PCPH), 51.5 (s, N*C*H₂), 28.8, 28.8, 25.2, 25.1, 23.3, 23.2; ³¹P NMR (CD₂Cl₂, 161.9 MHz) $\delta = 436.2$ (dd, ²*J*_{PP} = 67.7 Hz, ³*J*_{PH} = 183.2 Hz). UV/Vis (THF, λ (nm) ε (M⁻¹cm⁻¹): 325.9 (37849), 484.1 (2102). IR (ATR, [cm⁻¹]): 2161.4 (PH).

Figure S7. ³¹P{ 1 H} NMR spectrum of **3** in CD₂Cl₂.

*Figure S8.*³¹P NMR spectrum of **3** in CD₂Cl₂.

Preparation of 4: 2-Iodo-2-methylpropane (92.1 mg, 0.50 mmol) in THF (2 mL) was added dropwise to a stirred solution of **1** (86.8 mg, 0.10 mmol) in THF (4 mL). After stirring for 12 hours at room temperature, the solvent was removed under reduced pressure. The remaining solid was washed with toluene and dried *in vacuo* to afford **4** as orange powder (0.062 mmol, 62.4% yield). M. P. = > 250 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ = 7.35 (m, 4 H, C_{ar}*H*), 7.08 (m, 8 H, C_{ar}*H*), 4.89 (dd, 1 H, ¹*J*_{PH} = 182.8 Hz, PH; ³*J*_{PH} = 21.0 Hz, PCP*H*), 4.05 (m, 8 H, C*H*₂), 2.85 (m, 8 H, C*H*Me₂), 1.12 (m, 48 H, C*H*₃); ¹³C{¹H} NMR (CD₂Cl₂, 100.5 MHz): δ = 162.1 (t, ²*J*_{PC} = 10.8 Hz, PCC), 147.3 (C_{ar}), 147.0 (C_{ar}), 132.3 (C_{ar}), 130.7 (C_{ar}), 125.4 (C_{ar}), 125.2 (C_{ar}), 121.8 (dd, ¹*J*_{PC} = 47.4 Hz, ¹*J*_{PC} = 5.1 Hz, PCPH), 51.6 (s, NCH₂), 28.8, 28.8, 25.2, 25.1, 23.3, 23.2; ³¹P NMR (CD₂Cl₂, 161.9 MHz) δ = 436.1 (dd, ²*J*_{PP} = 67.5 Hz, ³*J*_{PH} = 21.0 Hz), 10.5 (dd, ²*J*_{PP} = 67.5 Hz, ¹*J*_{PH} = 182.8 Hz). UV/Vis (THF, λ (nm) ε (M⁻¹cm⁻¹): 320.9 (17004), 481.9 (44461). In the ¹H NMR spectrum, the new resonance at 4.74 and 1.35 ppm indicated the formation of isobutene.

Figure S9. ¹H NMR spectrum of **4** in CD₂Cl₂. *Toluene.

$\begin{array}{c} 1621 \\ 1620 \\ 1619 \\ 1619 \\ 1619 \\ 1619 \\ 1619 \\ 1322 \\ 1252 \\ 1252 \\ 1220 \\ 1220 \\ 1215 \\ 1$

-51.6 28.8 28.8 25.1 25.1 25.1 25.1 25.2 25.2

Figure S10. ¹³C{¹H} NMR spectrum of **4** in CD₂Cl₂. *Toluene.

Figure S11. ³¹P $\{^{1}H\}$ NMR spectrum of **4** in CD₂Cl₂.

Figure S12. ³¹P NMR spectrum of **4** in CD₂Cl₂.

Figure S13. (a) ¹H NMR spectrum of **1** and 2-Iodo-2-methylpropane in C_6D_6 ; (b) After heating the NMR tube at 80 °C for 4 hours. *Indicating the formation of isobutene.

Preparation of 5: LiAlH₄ (0.10 mmol) was added to a stirred solution of **3** or **4** (0.10 mmol) in THF (4 mL). After stirring for 0.5 hours, the solvent was removed under reduced pressure. The remaining residue was extracted with toluene and the solvent was removed under reduced pressure. The remaining solid was washed with acetonitrile and dried *in vacuo* to afford **5** as white powder (78.8 mg, 0.09 mmol, 90.7% yield). Only characteristic ¹H NMR and ³¹P NMR data is provided because of the presence of two isomers in the isolated product. ¹H NMR (C₆D₆, 400 MHz): *cis*-isomer: $\delta = 5.59$ (d, 1 H, ¹*J*_{PH} = 132.4 Hz, P*H*), *trans*-isomer: $\delta = 4.95$ (dd, 1 H, ¹*J*_{PH} = 158.4 Hz, *PCPH*); ³¹P NMR (C₆D₆, 161.9 MHz) *cis*-isomer: $\delta = 33.1$ (d, ¹*J*_{PH} = 132.4 Hz), *trans*-isomer: $\delta = 25.8$ (d, ¹*J*_{PH} = 158.4 Hz). IR (solid): 2168.7 cm⁻¹ (b, PH).

Figure S14. ¹H NMR spectrum of **5** in C_6D_6 .

Figure S15. ³¹P $\{^{1}H\}$ NMR spectrum of **5** in C₆D₆.

Figure S16. ³¹P NMR spectrum of **5** in C_6D_6 .

Preparation of 6: *p*-CN-aniline (5.0 equivalent) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in toluene (10 mL). After stirring for 2 days at 80 °C, the solvent was removed under reduced pressure. The remaining solid was dissolved in the diethyl ether/hexane solution. Yellow crystals were obtained via slow evaporation. The crystals were washed with cold hexane and dried *in vacuo* to afford **6** as yellow crystalline powder (41.5 mg, 0.042 mmol, 42.1% yield). Yellowish crystals suitable for single X-ray diffraction study were obtained from a fluorobenzene solution layered with acetonitrile on top and stored at -30 °C. Only characteristic ¹H NMR and ³¹P NMR data is provided because of the presence of two isomer in the isolated product. ¹H NMR (C₆D₆, 400 MHz): *cis*-isomer: $\delta = 5.49$ (dd, 1 H, ¹J_{PH} = 142.0 Hz, PH, ³J_{PH} = 9.2 Hz, PCPH), *trans*-isomer: $\delta = 4.69$ (d, 1 H, ¹J_{PH} = 155.6 Hz, PH); ³¹P NMR (C₆D₆, 161.9 MHz) *cis*-isomer: $\delta = 108.5$ (m, ²J_{PP} = 21.2 Hz), 15.7 (dd, ²J_{PP} = 21.2 Hz, ¹J_{PH} = 142.0 Hz), *trans*-isomer: $\delta = 108.4$ (m, ²J_{PP} = 4.0 Hz), 24.5 (d, ¹J_{PH} = 155.6 Hz).

Figure S17. ¹H NMR spectrum of **6** in C_6D_6 .

Figure S18. ³¹P $\{^{1}H\}$ NMR spectrum of **6** in C₆D₆.

Figure S19. ³¹P NMR spectrum of **6** in C_6D_6 .

Preparation of 7: *p*-CF₃-aniline (5.0 equivalent) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in toluene (10 mL). After stirring for 2 days at 80 °C, the solvent was removed under reduced pressure. The remaining solid was dissolved in the diethyl ether/hexane solution. Yellow crystals were obtained via slow evaporation. The crystals were washed with cold hexane and dried *in vacuo* to afford **7** as yellow crystalline powder (48.9 mg, 0.048 mmol, 47.6% yield). Only characteristic ¹H NMR and ³¹P NMR data is provided because of the presence of two isomer in the isolated product. ¹H NMR (C₆D₆, 400 MHz): *cis*-isomer: $\delta = 5.51$ (dd, 1 H, ¹*J*_{PH} = 142.0 Hz, P*H*, ³*J*_{PH} = 9.6 Hz, *PCPH*), *trans*-isomer: $\delta = 4.70$ (d, 1 H, ¹*J*_{PH} = 155.6 Hz, P*H*); ³¹P NMR (C₆D₆, 161.9 MHz) *cis*-isomer: $\delta = 107.2$ (m, ²*J*_{PP} = 20.9 Hz), 14.4 (dd, ²*J*_{PP} = 20.9 Hz, ¹*J*_{PH} = 142.0 Hz), *trans*-isomer: $\delta = 108.4$ (m, ²*J*_{PP} = 3.7 Hz), 22.7 (d, ¹*J*_{PH} = 155.6 Hz); ¹⁹F NMR (C₆D₆) *cis*-isomer: $\delta = -59.7$ (s), *trans*-isomer: $\delta = -59.8$ (s).

Figure S20. ¹H NMR spectrum of **7** in C_6D_6 .

Figure S21. ³¹P{¹H} NMR spectrum of 7 in C_6D_6 .

Figure S22. ³¹P NMR spectrum of **7** in C_6D_6 .

Figure S23. ¹⁹F NMR spectrum of **7** in C_6D_6 .

Preparation of 9: H₂O (1.0 equivalent) in THF (1 mL) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in THF (3 mL). After stirring for 2 hours at 60 °C, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford **9** as yellowish powder (62.5 mg, 0.071 mmol, 70.6% yield). Yellowish crystals were obtained from a saturated hexane/THF solution via slow evaporation. M. P. = 236 °C. ¹H NMR (C₆D₆, 400 MHz): δ = 7.22 (m, 6 H, CarH), 6.93 (m, 6 H, CarH), 5.62 (d, 1 H, ¹J_{PH} = 476.5 Hz, PH), 3.55 (m, 4 H, CHMe₂), 3.28 (m, 4 H, CHMe₂), 3.19 (m, 4 H, NH₂), 3.10 (m, 4 H, NH₂), 1.70 (b, 6 H, CH₃), 1.38 (m, 12 H, CH₃), 1.18 (m, 30 H, CH₃); ¹³C{¹H} NMR (C₆D₆, 100.5 MHz): δ = 155.6 (dd, ²J_{PC} = 12.6 Hz, ²J_{PC} = 4.3 Hz, PCC), 150.4 (s, Car), 150.0 (s, Car), 149.4 (d, J_{PC} = 4.5 Hz, Car), 149.0 (s, Car), 147.6 (s, Car), 147.3 (s, Car), 147.2 (s, Car), 147.0 (s, Car), 136.9 (s, Car), 135.2 (s, Car), 135.2 (s, Car), 128.5 (s, Car), 128.4 (s, Car), 127.5 (s, Car),

124.4 (s, C_{ar}), 123.6 (s, C_{ar}), 123.4 (s, C_{ar}), 123.1 (s, C_{ar}), 51.3 (s, NCH₂), 50.8 (s, NCH₂), 29.1, 28.5, 28.3, 28.2, 26.4, 25.5, 25.4, 25.4, 24.8, 24.1, 23.4, 23.3, 22.9, 22.7, 22.6; ³¹P NMR (C₆D₆, 161.9 MHz) $\delta = 8.0$ (dd, ²*J*_{PP} = 15.4 Hz, ¹*J*_{PH} = 476.5 Hz), -57.8 (dd, ²*J*_{PP} = 15.4 Hz, ¹*J*_{PH} = 156.7 Hz). IR (solid): 2300.8 (s, P(O)H), 2181.7 cm⁻¹ (s, PH).

Figure S24. ¹H NMR spectrum of **9** in C₆D₆. *Small amount of impurity.

Figure S25. ¹³C{¹H} NMR spectrum of **9** in C₆D₆. *Small amount of impurity.

Figure S26. ³¹P $\{^{1}H\}$ NMR spectrum of **9** in C₆D₆. *Small amount of impurity.

Figure S27. ³¹P NMR spectrum of 9 in C_6D_6 .

Figure S28. ³¹P $\{^{1}H\}$ NMR spectrum of the mixture of **1** and 3 equivalent of H₂O in THF.

Preparation of 8b: MeOH (2.0 equivalent) in THF (1 mL) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in THF (3 mL). After stirring for 4 hours at 60 °C, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford **8b'**as yellow powder (66.7 mg, 0.074 mmol, 74.2% yield). Only characteristic ¹H NMR and ³¹P NMR data is provided because of the presence of two isomer in the isolated product. Yellow crystals were obtained from a saturated hexane/THF solution via slow evaporation. M. P. > 250 °C ¹H NMR (C₆D₆, 400 MHz): *cis*-isomer: $\delta = 5.30$ (dd, 1 H, ¹*J*_{PH} = 140.4 Hz, PH, ³*J*_{PH} = 13.2 Hz, *PCPH*), *trans*-isomer: $\delta = 4.81$ (dd, 1 H, ¹*J*_{PH} = 158.4 Hz, PH, ³*J*_{PH} = 2.4 Hz, *PCPH*); ³¹P NMR (C₆D₆, 161.9 MHz) *cis*-isomer: $\delta = 169.9$ (m, ²*J*_{PP} = 23.3 Hz, ³*J*_{PH} = 7.6 Hz), 6.3 (dd, ²*J*_{PP} = 23.3 Hz, ¹*J*_{PH} = 140.4 Hz), *trans*-isomer: $\delta = 178.1$ (m, ²*J*_{PH} = 7.1 Hz), 16.1 (d, ¹*J*_{PH} = 158.4 Hz). IR (solid): 2163.6 cm⁻¹ (b, PH).

Figure S29. ¹H NMR spectrum of **8b** in C_6D_6 .

Figure S30. ³¹P $\{^{1}H\}$ NMR spectrum of **8b** in C₆D₆.

Figure S31. ³¹P NMR spectrum of **8b** in C_6D_6 .

Preparation of 8c: PhOH (1.0 equivalent) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in THF (3 mL). After stirring for 12 hours at room temperature, the solvent was removed under reduced pressure. The remaining solid was washed with cold acetonitrile and dried *in vacuo* to afford **8c** as yellow powder (72.6 mg, 0.076 mmol, 75.5% yield). Yellow crystals were obtained from a saturated hexane/THF solution via slow evaporation. Only characteristic ¹H NMR and ³¹P NMR data is provided because of the presence of two isomer in the isolated product. M. P. = 230 °C (Decomposition). ¹H NMR (C₆D₆, 400 MHz): *cis*-isomer: δ = 5.66 (dd, 1 H, ¹J_{PH} = 150.8 Hz, PH, ³J_{PH} = 7.6 Hz, PCPH), *trans*-isomer δ = 5.02 (d, 1 H, ¹J_{PH} = 152.0 Hz, PH); ³¹P NMR (C₆D₆, 161.9 MHz) *cis*-isomer: δ = 182.1 (dd, ²J_{PP} = 27.0 Hz, ³J_{PH} = 7.6 Hz), 18.9 (dd, ²J_{PP} = 27.0 Hz, ¹J_{PH} = 150.8 Hz), *trans*-isomer: δ = 181.7 (m, ²J_{PP} = 3.2 Hz), 32.2 (m, ²J_{PP} = 3.2 Hz, ¹J_{PH} = 152.0 Hz). IR (solid): 2156.4 cm⁻¹ (s, PH).

Figure S32. ¹H NMR spectrum of 8c in C_6D_6 .

Figure S33. ³¹P{¹H} NMR spectrum of **8c** in C_6D_6 .

Figure S34. ³¹P NMR spectrum of **8c** in C_6D_6 .

Preparation of 10: PhOH (3.0 equivalent) was added to a stirred solution of **1** (86.8 mg, 0.10 mmol) in acetonitrile (3 mL). After stirring for 12 hours at room temperature, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford **10** as orange powder (104.9 mg, 0.091 mmol, 91.3% yield). Orange crystals were obtained from a saturated C₆D₆ solution via slow evaporation. M. P. = > 250 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ = 13.4 (s, 2 H, PhO–HOPh), 7.35 (m, 4 H, CarH), 7.09 (m, 14 H, CarH), 6.86 (m, 6 H, CarH), 6.60 (m, 6 H, CarH), 4.91 (dd, 1 H, ¹J_{PH} = 183.2 Hz, PH; ³J_{PH} = 21.2 Hz, *PCPH*), 4.05 (m, 8 H, CH₂), 2.84 (m, 8 H, CHMe₂), 1.24 (m, 24 H, CH₃) 1.06 (m, 24 H, CH₃); ¹³C{¹H} NMR (CD₂Cl₂, 100.5 MHz): δ = 162.1 (t, ²J_{PC} = 10.8 Hz, PCC), 161.6 (Car), 147.3

(Car), 147.0 (Car), 130.7 (Car), 128.9 (Car), 125.4 (Car), 125.2 (Car), 122.3 (Car), 121.8 (dd, ${}^{1}J_{PC} = 47.4 \text{ Hz}$, ${}^{1}J_{PC} = 5.1 \text{ Hz}$, PCPH), 116.8 (Car), 115.9 (Car), 51.4 (s, NCH₂), 28.8, 28.8, 25.2, 25.1, 23.3, 23.2; ${}^{31}P$ NMR (CD₂Cl₂, 161.9 MHz) $\delta = 436.2$ (dd, ${}^{2}J_{PP} = 67.5 \text{ Hz}$, ${}^{3}J_{PH} = 21.0 \text{ Hz}$), 10.2 (dd, ${}^{2}J_{PP} = 67.5 \text{ Hz}$, ${}^{1}J_{PH} = 182.8 \text{ Hz}$). UV/Vis (CH₂Cl₂, λ (nm) ε (M⁻¹cm⁻¹)): 266.9 (19012), 325.7 (8079), 483.1 (22400).

Figure S35. ¹H NMR spectrum of **10** in CD₂Cl₂.

-162.2 -162.1 -161.9 -161.6 -161.6	1469 130.7 125.2 125.2 125.2 125.2 125.2 122.0 122.0 122.0 122.0 122.0 122.0 121.5 115.9 115.9	51.4	28.8 28.8 25.1 25.1 25.1
		1	

Figure S36. ${}^{13}C{}^{1}H$ NMR spectrum of **10** in CD₂Cl₂.

Figure S37. ${}^{31}P{}^{1}H$ NMR spectrum of **10** in CD₂Cl₂.

Figure S38. ³¹P NMR spectrum of 10 in CD₂Cl₂.

S2. X-Ray Diffraction Studies

These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, or by emailing data_request@ccdc.cam.ac.uk. The CCDC reference numbers are 1988878-1988885.

Table S1. The summary of crystal data and structure refinement

Compounds	2	3	6	7
CCDC	1988881	1988878	1988880	1988882

Empirical formula	$C_{64}H_{82}N_4P_2$	$C_{124}H_{161}FN_{12}P_4$	$C_{256}H_{334}N_{26}P_8$	$C_{63}H_{82}F_3N_5P_2$
Formula weight	969.27	1962.52	4023.23	1028.27
Temperature/K	150.00(10)	149.97(10)	150.00(10)	235.01(10)
Crystal system	orthorhombic	monoclinic	monoclinic	orthorhombic
Space group	P212121	$P2_1/n$	P21/c	Pca2 ₁
a/Å	12.5962(2)	19.9039(3)	26.2082(9)	22.9944(4)
b/Å	13.0948(2)	16.3725(2)	21.2732(9)	13.1476(2)
c/Å	34.8018(4)	38.5734(5)	22.2484(8)	19.4279(3)
α/°	90	90	90	90
β/°	90	93.9800(10)	95.906(3)	90
γ/°	90	90	90	90
Volume/Å ³	5740.37(14)	12539.9(3)	12338.4(8)	5873.47(16)
Z	4	4	2	4
$\rho_{calc}g/cm^3$	1.122	1.040	1.083	1.163
μ/mm^{-1}	0.994	0.936	0.953	1.079
F(000)	2096.0	4232.0	4344.0	2208.0
Crystal size/mm ³	$0.23 \times 0.22 \times 0.19$	$0.1\times0.09\times0.08$	$0.1\times0.08\times0.06$	$0.08 \times 0.08 \times 0.06$
Radiation	CuKa (λ = 1.54184)	CuKa (λ = 1.54184)	CuKa (λ = 1.54184)	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.212 to 146.786	5.148 to 148.668	5.362 to 148.892	6.724 to 145.338
T 1	$\text{-}15 \leq h \leq 9, \text{-}15 \leq k \leq$	$-22 \le h \le 24, -13 \le k \le$	$a - 31 \le h \le 26, -26 \le k \le 10^{-3}$	$-26 \le h \le 28, -15 \le k \le$
Index ranges	$16, -43 \le l \le 29$	19, $-47 \le l \le 48$	15, $-27 \le l \le 27$	16, $-20 \le 1 \le 23$
Reflections collected	14864	72764	73158	22695
T 1 1 / (1 /	9701 [R _{int} = 0.0235,	24562 [$R_{int} = 0.0320$,	24449 [$R_{int} = 0.0674$,	9212 [$R_{int} = 0.0239$,
independent reflections	$R_{sigma} = 0.0345]$	$R_{sigma} = 0.0368]$	$R_{sigma} = 0.0982]$	$R_{sigma} = 0.0277$]
Data/restraints/parameters	9701/0/647	24562/62/1331	24449/13/1340	9212/25/688
Goodness-of-fit on F ²	1.033	1.054	1.006	1.021
Final D indouas [I>-2- (I)]	$R_1 = 0.0371, wR_2 =$	$R_1 = 0.0753, wR_2 =$	$R_1 = 0.0639, wR_2 =$	$R_1 = 0.0424, wR_2 =$
Final K indexes $[1 > -20(1)]$	0.0934	0.1981	0.1536	0.1129
Final P indexes [all data]	$R_1 = 0.0405, wR_2 =$	$R_1 = 0.0844, wR_2 =$	$R_1 = 0.1228, wR_2 =$	$R_1 = 0.0482, wR_2 =$
i mai iv maeneo [an aata]	0.0960	0.2033	0.1739	0.1182
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.54/-0.32	0.60/-0.83	0.32/-0.29	0.44/-0.29
Flack parameter	-0.003(8)			0.027(9)

Continued

Compounds	8b	8c	9	10
CCDC	1988879	1988883	1988884	1988885
Empirical formula	$C_{57}H_{80}N_4OP_2$	$C_{62}H_{82}N_4OP_2$	$C_{56}H_{78}N_4OP_2$	$C_{77}H_{97}N_4O_3P_2$
Formula weight	899.19	961.25	885.16	1191.54
Temperature/K	150.00(10)	150.00(10)	150.00(10)	150.00(10)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	P21/n	P21/n	P21/n	P-1

a/Å	12.42330(10)	12.71500(10)	14.36670(10)	13.3039(3)			
b/Å	33.6427(3)	22.9346(2)	12.03320(10)	22.5743(7)			
c/Å	12.62960(10)	21.8186(2)	15.31190(10)	26.5944(6)			
$\alpha/^{\circ}$	90	90	90	67.479(2)			
β/°	94.2270(10)	99.4350(10)	96.6110(10)	80.235(2)			
γ/°	90	90	90	81.533(2)			
Volume/Å ³	5264.23(8)	6276.52(10)	2629.48(3)	7241.3(3)			
Z	4	4	2	4			
$\rho_{calc}g/cm^3$	1.135	1.017	1.118	1.093			
μ/mm ⁻¹	1.059	0.917	1.053	0.903			
F(000)	1952.0	2080.0	960.0	2564.0			
Crystal size/mm ³	$0.16 \times 0.12 \times 0.11$	$0.3\times0.05\times0.05$	$0.11 \times 0.1 \times 0.06$	$0.15\times0.12\times0.1$			
Radiation	CuKa (λ = 1.54184)	CuKa (λ = 1.54184)	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/^	5.254 to 148.406	5.632 to 148.284	7.992 to 148.242	6.77 to 147.52			
Te day was an	$-14 \leq h \leq 15, -41 \leq k \leq -15 \leq h \leq 15, -15 \leq k \leq -17 \leq h \leq 17, -7 \leq k \leq -14 \leq h \leq 16, -27 \leq k \leq -16 \leq 10, -27 \leq k \leq -16 < -16 \leq -16 < -16 \leq -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 < -16 <-16 <$						
Index ranges	27, $-13 \le l \le 15$	27, $-27 \le l \le 25$	14, -18 \leq 1 \leq 19	28, $-15 \le 1 \le 33$			
Reflections collected	33317	36570	14672	47833			
Independent reflections	10457 [$R_{int} = 0.0284$,	12416 [$R_{int} = 0.0296$,	5174 [$R_{int} = 0.0302$,	$28103 [R_{int} = 0.0240,$			
Data/mastraints/normators	$R_{sigma} = 0.0279$	$R_{sigma} = 0.0318$	$K_{sigma} = 0.0298$	$R_{sigma} = 0.0339$			
	10457/0/622	12410/2/002	5174/0/445	28105/95/1017			
Goodness-of-fit on F ²	1.016	1.060	1.054	1.041			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0385, wR_2 = 0.0978$	$R_1 = 0.0461, wR_2 = 0.1268$	$R_1 = 0.0422, wR_2 = 0.1088$	$R_1 = 0.0531, wR_2 = 0.1373$			
Final D indoves [all data]	$R_1 = 0.0408, wR_2 =$	$R_1 = 0.0507, wR_2 =$	$R_1 = 0.0446, wR_2 =$	$R_1 = 0.0687, wR_2 =$			
rmai k muexes [an uata]	0.0995	0.1303	0.1105	0.1498			
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.55/-0.30	0.73/-0.83	0.40/-0.32	1.01/-0.63			
Flack parameter							

S3. Theoretical Details

Calculations were carried out Gaussian 09 package^{S2} except the IBO analysis (see below). Geometry optimizations were performed using the M06-2X functional.^{S3} The Def2-SVP basis set was used for all the atoms. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide the thermal corrections of Gibbs free energy. Transition states were submitted to intrinsic reaction coordinate (IRC) calculations to determine two corresponding minima.

The single-point energy calculations were performed at the M06-2X/Def2-TZVP level of theory for solution-phase (THF). The gas-phase geometry was used for all the solution phase calculations. The SMD method was used with the corresponding solvent, while the Bondi radii were chosen as the atomic radii to define the molecular cavity. The Gibbs energy corrections from frequency calculations were added to the single-point energies to obtain the Gibbs free energies in solution, respectively. All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol/L, 298K. NBO calculations were carried out using NBO 6.0 program^{S4} at the M06-2X/TZVP//M06-2X/Def2-SVP level of theory. Optimized structures were visualized by the IBOview program.^{S5} IBOs were carried out using ORCA programS5 at the PBE/Def2-TZVP//M06-2X/Def2-SVP level of theory.

Species	Thermal Corrections of	Solvation Energies (Hartree)
	Gibbs Free Energies	
	(Enthalpies are given in	
	parentheses) (Hartree)	
1	1.114525	-3081.28057495
PhC≡CH	0.080445	-308.380589409
IN1A	1.217700	-3389.67234431
TS1A	1.215322	-3389.64261491
2	1.213241	-3389.68830476
PhOH	0.077095	-307.469568762
IN1B	1.218028	-3388.76982602
TS1B	1.212330	-3388.74006809
8c	1.215825	-3388.77638003

Table S2. Calculated energies of model compounds for this paper.

Figure S39. Depiction of selected IBOs (O–H σ -electrons and π -electrons at P) for IN1C, TS1C, and IN2C.

1				N	2 57614	0.802005	0 146242
			o	18	-3.37014	0.892993	0.140343
Р	-0.24116	1.332062	-0.16447	Ν	3.186724	-1.02523	-0.46476
Р	-0.16075	-1.42216	-0.40666	Ν	3 113946	1 181388	-0 34678
N	2 50 4 67	1 07075	0.0005	14	5.115740	1.101500	-0.5+070
IN	-3.50467	-1.2/9/5	-0.26805	С	0.951004	-0.00466	-0.34429

С	-4.92616	-0.94656	-0.26091	C	1.605478	4.97146	-1.34822
Н	-5.31461	-0.90204	-1.29484	Н	1.503802	5.336576	0.768034
С	-2.73815	-0.15209	-0.11471	Н	1.720838	4.32344	-3.39783
С	2.344516	0.046154	-0.38307	Н	1.217216	5.958017	-1.60818
С	-4.93324	0.428959	0.40593	C	2.406634	2.950477	1.799227
Н	-5.67647	1.115628	-0.02061	Н	2.249705	1.861398	1.826375
С	-1.34949	-0.08718	-0.21289	C	2.591051	1.768956	-3.15924
С	4.518206	0.864293	-0.58978	Н	2.947683	0.826874	-2.7169
Н	5.179477	1.473943	0.039238	C	1.338361	3.579485	2.691932
С	4.571721	-0.62384	-0.2496	Н	1.491934	4.663316	2.81402
Н	5.254763	-1.19443	-0.89261	Н	0.337168	3.406426	2.268549
Н	-5.11836	0.354203	1.492707	Н	1.377623	3.128887	3.694957
Н	-5.50848	-1.69463	0.292831	C	3.814021	3.250075	2.325342
Н	4.78034	1.049909	-1.64726	Н	3.920059	2.913629	3.367653
Н	4.868409	-0.79039	0.801714	Н	4.584557	2.74692	1.723848
С	-3.13712	2.192694	0.542293	Н	4.01586	4.331985	2.292117
С	-2.90644	3.153788	-0.46108	C	3.645579	2.241806	-4.16404
С	-2.89533	2.4559	1.90044	Н	4.608098	2.450342	-3.67317
С	-2.51914	4.433254	-0.05909	Н	3.809138	1.477895	-4.93895
С	-2.5193	3.754713	2.257942	Н	3.322808	3.165659	-4.66773
С	-2.34664	4.736961	1.289448	C	1.261087	1.448382	-3.84947
Н	-2.32306	5.198974	-0.80984	Н	0.51149	1.141106	-3.10522
Н	-2.32874	3.989425	3.307852	Н	0.871571	2.327866	-4.38659
Н	-2.04341	5.743265	1.584465	Н	1.392821	0.635518	-4.58101
С	-3.04644	-2.41813	-1.00483	C	2.890548	-2.20116	2.19231
С	-2.66961	-3.57692	-0.30479	Н	3.09107	-1.15283	1.926319
С	-2.94926	-2.32595	-2.40648	C	2.358905	-2.32463	-2.86796
С	-2.23851	-4.67968	-1.04695	Н	1.985512	-1.3129	-2.64263
С	-2.51496	-3.4537	-3.10695	C	4.087909	-2.73138	2.986526
С	-2.16863	-4.62217	-2.43518	Н	3.918868	-3.77362	3.298204
Н	-1.93248	-5.58991	-0.52937	Н	5.012149	-2.71009	2.389598
Н	-2.42512	-3.40808	-4.19478	Н	4.247115	-2.13222	3.895355
Н	-1.82444	-5.49115	-2.99925	C	1.613337	-2.19886	3.040244
С	2.768332	-2.386	-0.35944	Н	0.762979	-1.82496	2.44946
С	2.40322	-3.06467	-1.53895	Н	1.370036	-3.21342	3.392927
С	2.679564	-2.98465	0.907319	Н	1.744975	-1.55712	3.924565
С	2.027378	-4.40432	-1.42717	C	1.368941	-2.94139	-3.85347
С	2.312342	-4.33292	0.969383	Н	0.380771	-3.05836	-3.38316
С	2.000928	-5.03806	-0.18681	Н	1.26106	-2.28512	-4.72993
Н	1.725357	-4.95823	-2.31617	Н	1.709858	-3.92297	-4.21896
Н	2.237976	-4.82636	1.941143	C	3.750815	-2.19535	-3.49435
Н	1.704176	-6.08648	-0.12043	Н	3.698495	-1.62819	-4.4366
С	2.596604	2.470808	-0.68906	Н	4.448386	-1.67232	-2.82435
С	2.269031	3.366751	0.344565	Н	4.172855	-3.18823	-3.71489
С	2.382266	2.781876	-2.04365	C	-2.69864	-3.61567	1.213177
С	1.779155	4.625251	-0.01114	Н	-2.63011	-2.57206	1.555198
С	1.897382	4.055684	-2.35347	С	-3.22736	-1.03591	-3.16382

Н	-3.59738	-0.282	-2.45348	Н	3.041306	1.137807	2.153594
С	-3.01019	2.772019	-1.93018	Н	3.041116	1.146831	-2.15297
Н	-2.65682	1.731446	-2.00138	Н	4.284799	1.206538	0.000427
С	-2.94367	1.364845	2.957188	С	-1.03588	0.928272	0.000023
Н	-3.20693	0.418744	2.461806	С	-2.24433	0.863823	-0.00009
С	-2.08658	3.602624	-2.81911	Н	-3.31659	0.807463	-0.00018
Н	-2.0858	3.192773	-3.8404	IN1 A			
Н	-2.4141	4.651962	-2.88895	P	-1 89284	0 655581	-1.06835
Н	-1.05603	3.572812	-2.4323	P	-0.83188	0.359184	1 468885
С	-4.45706	2.821686	-2.42941	N	-0.4157	3.692891	1.38266
Н	-4.51346	2.503834	-3.48209	N	-1.75638	3.950121	-0.35833
Н	-5.10825	2.159569	-1.84027	N	-1 35924	-2.89323	1 054197
Н	-4.86061	3.843758	-2.3579	N	-1 83672	-2 73494	-1 10428
С	-1.55693	1.160392	3.578712	C	-1 52838	-0 62446	0 136471
Н	-1.24084	2.055247	4.137756	C	-0.81014	5 09688	1 439458
Н	-1.57447	0.311886	4.27931	н	-1 55945	5 261886	2 23386
Н	-0.80966	0.962277	2.794451	C II	-1 11857	3.026685	0.419927
С	-4.00026	1.654295	4.027049	C	-1.57642	-2 01544	0.033666
Н	-3.7572	2.57478	4.579801	C	-1 40948	5 310312	0.044971
Н	-4.99912	1.786796	3.584773	н	-2 30483	5 947193	0.056247
Н	-4.04918	0.831175	4.755143	C II	-1 19633	1 643505	0.050247
С	-4.3063	-1.226	-4.23422	C	-1 92419	-4 16171	-0.80602
Н	-5.24079	-1.61448	-3.80207	н	-1 43158	-4 75918	-1 58593
Н	-4.52522	-0.2695	-4.73177	C II	-1 21538	-4 25247	0 548715
Н	-3.97588	-1.93541	-5.008	н	-1 67444	-4.97701	1 235191
С	-1.93362	-0.47579	-3.76653	н	-0.67376	5 748464	-0.65147
Н	-1.53637	-1.15442	-4.53831	н	0.055067	5 741181	1 6449
Н	-2.12092	0.50245	-4.23754	н	-2.98151	-4 4794	-0 74262
Н	-1.1666	-0.35389	-2.9865	н	-0 14814	-4 51062	0.43093
С	-4.02182	-4.20325	1.716498	н	0.87517	0.417248	-0.86204
Н	-4.88499	-3.63124	1.345858	C II	2 138489	-1 49017	-1 02447
Н	-4.13761	-5.24211	1.370052	C	1 489869	-0.47036	-0.92012
Н	-4.05612	-4.20329	2.816235	C	2 810503	-0.47030	-1.08577
С	-1.50236	-4.36542	1.800082	C	2.010303	-3 92846	-1 33175
Н	-1.48199	-4.23958	2.893092	C	4 191211	-2 86578	-0.85385
Н	-1.55673	-5.4464	1.596279	C	2 69585	-5 17158	-1 34142
Н	-0.56235	-3.97216	1.384162	н	0.997142	-3 84514	-1 51223
PhC≡CH				C	4 810483	-4 11304	-0.86063
C C	0 401047	1 004399	0.000134	н	4 767575	-1 95974	-0.66052
C	1 108292	1.038875	1 211933	C	4 067174	-5 26893	-1 10244
C	1.108205	1.043928	-1.21155	н	2.108777	-6.07121	-1.53467
C	2.498013	1.111349	1.207912	н	5 883217	-4,18349	-0 67452
н	0.554807	1.00818	2.151081	н	4 556459	-6.24389	-1 10562
C.	2 497937	1 116397	-1 20734	C	-4 12934	3 414721	-0 52193
ч	0 554637	1.017156	-2.15077	C	-2 89516	3 636513	-1 16277
C	3 105305	1 1/10067	0 000333	C	-2.07510	3 480754	-1.10277
C	5.175505	1.147702	0.000352	C	-2.1+132	5.707134	-2.55107

С	-3.86351	3.131568	-3.30279	С	-2.19553	1.873309	4.694606
С	-5.09045	2.904471	-2.68846	Н	-3.26974	2.061901	4.846132
С	-5.22087	3.044862	-1.31071	Н	-2.07203	0.968707	4.080089
Н	-3.76913	2.995093	-4.38082	Н	-1.75447	1.685755	5.685817
Н	-5.95174	2.606294	-3.28905	C	-1.66274	4.329957	4.884548
Н	-6.18457	2.848963	-0.83511	Н	-1.1879	5.206577	4.420372
С	-1.38668	3.677	-3.21024	Н	-2.719	4.568751	5.081559
Н	-0.62864	3.48746	-2.43361	Н	-1.1672	4.16443	5.853863
С	-4.29099	3.511812	0.985602	C	-3.89075	-1.93156	-2.17467
Н	-3.36149	3.928415	1.401786	C	-2.50566	-2.17983	-2.24578
С	-1.14547	2.675704	-4.34111	C	-1.76372	-1.87802	-3.40377
Н	-0.09343	2.711968	-4.66075	C	-2.43751	-1.32666	-4.49636
Н	-1.37563	1.653263	-4.0062	C	-3.80279	-1.06653	-4.43933
Н	-1.76328	2.905435	-5.22328	C	-4.52034	-1.36952	-3.28853
С	-1.2222	5.118154	-3.70726	Н	-1.87843	-1.08042	-5.40053
Н	-0.22241	5.271265	-4.14079	Н	-4.30951	-0.62065	-5.29714
Н	-1.96994	5.339278	-4.48482	Н	-5.59096	-1.15827	-3.24722
Н	-1.3638	5.846608	-2.89564	C	-0.27504	-2.14658	-3.47896
С	-5.42618	4.463216	1.374687	Н	0.080577	-2.22544	-2.44443
Н	-5.46896	4.579564	2.467952	C	-4.71733	-2.23844	-0.93792
Н	-5.29059	5.45761	0.924197	Н	-4.04444	-2.62575	-0.16018
Н	-6.40171	4.075245	1.044934	C	0.000772	-3.47109	-4.19981
С	-4.49134	2.126618	1.614333	Н	1.079388	-3.69013	-4.21005
Н	-3.64945	1.452853	1.385053	Н	-0.51708	-4.31302	-3.71439
Н	-4.57689	2.216869	2.708819	Н	-0.35198	-3.42432	-5.24222
Н	-5.41945	1.666295	1.239104	C	0.50273	-0.998	-4.12001
С	-0.09297	2.801646	3.643055	Н	1.582963	-1.18353	-4.02719
С	0.42086	3.075862	2.364267	Н	0.271328	-0.88823	-5.19126
С	1.736128	2.717191	1.997241	Н	0.27314	-0.05197	-3.60762
С	2.547531	2.129465	2.967923	C	-5.36931	-0.97191	-0.37685
С	2.071171	1.897069	4.256349	Н	-5.88681	-1.19573	0.569545
С	0.763985	2.225002	4.587438	Н	-4.61093	-0.19441	-0.19989
Н	3.563862	1.829476	2.713505	Н	-6.11511	-0.56663	-1.07893
Н	2.723189	1.43592	5.000229	C	-5.76243	-3.32105	-1.22802
Н	0.389854	2.005952	5.588857	Н	-5.2973	-4.2411	-1.6127
С	2.238445	2.94174	0.579218	Н	-6.32484	-3.5717	-0.31577
Н	1.418017	2.642548	-0.09404	Н	-6.48533	-2.97456	-1.98227
С	-1.54247	3.077097	4.008411	C	-2.24458	-2.2154	3.228018
Н	-2.09238	3.239168	3.067403	C	-1.13114	-2.55485	2.426462
С	2.550118	4.420796	0.322352	C	0.176919	-2.54967	2.940262
Η	2.892535	4.568366	-0.71277	C	0.348595	-2.27936	4.303302
Η	1.669406	5.056942	0.481136	C	-0.73638	-1.98445	5.115517
Н	3.346378	4.766884	0.999242	C	-2.02041	-1.93838	4.576479
С	3.455191	2.085342	0.231438	Н	1.355771	-2.27554	4.723302
Н	3.665146	2.155861	-0.84555	Н	-0.58333	-1.76731	6.17423
Н	4.353463	2.430399	0.767109	Н	-2.85762	-1.66464	5.218085
Н	3.286383	1.026144	0.473009	С	1.391297	-2.75834	2.054373

Н	1.049105	-2.66454	1.013114	С	2.51584	-3.27305	-1.09059
С	-3.6403	-2.11648	2.632108	С	4.19063	-1.52692	-1.19271
Н	-3.52711	-1.62365	1.654532	C	3.489038	-4.22028	-1.38633
С	2.434098	-1.65863	2.279598	Н	1.4778	-3.57966	-0.94176
Н	3.255221	-1.76836	1.555712	С	5.154916	-2.48413	-1.48591
Н	1.979276	-0.66458	2.152387	Н	4.465371	-0.47402	-1.1276
Н	2.871909	-1.72303	3.288197	С	4.817126	-3.83586	-1.58239
С	2.018804	-4.14351	2.24769	Н	3.207317	-5.27236	-1.46538
Н	2.853357	-4.28442	1.541941	Н	6.188283	-2.17007	-1.64405
Н	2.410885	-4.24891	3.271851	Н	5.579898	-4.58099	-1.81098
Н	1.290803	-4.95345	2.087683	С	-4.07414	3.383082	-0.50851
С	-4.26064	-3.50037	2.412729	С	-2.83376	3.579747	-1.14561
Н	-5.25396	-3.40797	1.946022	С	-2.68019	3.407259	-2.53332
Н	-3.63746	-4.12733	1.758565	С	-3.80446	3.055186	-3.28381
Н	-4.38095	-4.02585	3.372785	С	-5.03641	2.852126	-2.6702
С	-4.58043	-1.2347	3.452085	С	-5.1681	3.012054	-1.29453
Н	-4.12904	-0.25025	3.64384	Н	-3.70909	2.905598	-4.36022
Н	-5.51972	-1.07759	2.902161	Н	-5.90004	2.557239	-3.26928
Н	-4.84017	-1.69609	4.417391	Н	-6.1364	2.836991	-0.81952
TC1 A				С	-1.32081	3.567385	-3.1904
D	1 96793	0 55466	1 00556	Н	-0.56502	3.405114	-2.40546
r D	-1.80783	0.55400	-1.09550	C	-4.23763	3.519876	0.995326
г N	-0.39082	2 50227	1.110399	Н	-3.29473	3.91554	1.401257
N	-0.22033	3.39237	0.34507	C	-1.07409	2.531478	-4.28903
IN N	-1.09438	2.06622	-0.34397	Н	-0.02334	2.567096	-4.61239
N	-1.55190	-2.90022	0.0600	Н	-1.29411	1.51632	-3.92587
C C	-1.65192	-0.72827	0.164634	Н	-1.6967	2.726083	-5.17617
C C	-0.6476	4 980578	1 /10761	С	-1.15063	4.992397	-3.73043
с u	-0.0470	5 112213	2 252486	Н	-0.14886	5.129628	-4.16449
n C	-1.30333	2 026853	0.371471	Н	-1.89532	5.192761	-4.51655
C C	-1.78554	-2 10013	0.111458	Н	-1.29263	5.74323	-2.93963
C C	-1.31702	5 227573	0.063376	С	-5.3457	4.513183	1.355885
ч	-2 20318	5 87/39/	0.135321	Н	-5.39004	4.659393	2.445399
n C	-1 11984	1 569725	0.135321	Н	-5.17824	5.491025	0.880884
C C	-2 37126	-4 24415	-0.6016	Н	-6.33086	4.146465	1.030182
н	-2 03339	-4 91525	-1 40103	C	-4.48016	2.156954	1.654254
n C	-1 51022	-4 34155	0 660433	Н	-3.65445	1.458893	1.440143
н	-1 91392	-5 02962	1 415601	Н	-4.56886	2.27264	2.74588
н	-0.61083	5 678754	-0.65638	Н	-5.41718	1.709548	1.285583
н	0.212676	5 638343	1 603185	C	0.112793	2.592093	3.497305
н	-3 4362	-4 46089	-0 39304	C	0.615585	2.931422	2.230069
н	-0 47991	-4 65668	0.412969	C	1.920038	2.570371	1.826219
н	-0.06464	0.160846	-1.27642	C	2.728041	1.905714	2.750322
C	1.830752	-0.9669	-0.65478	С	2.262664	1.610367	4.030413
C	0.834793	-0.24924	-0.42362	С	0.967315	1.947249	4.398175
C	2.844071	-1.89946	-0.97836	Н	3.73496	1.599555	2.468399
-	,1			Н	2.912657	1.090286	4.7362

Н	0.60008	1.676689	5.390219	Н	-5.73995	-4.03036	-1.76987
С	2.40522	2.869422	0.41497	Н	-6.76496	-3.25115	-0.53414
Н	1.590263	2.569686	-0.26612	Н	-6.7595	-2.64139	-2.20385
С	-1.33336	2.849343	3.885738	С	-2.44768	-2.19171	3.273591
Н	-1.87343	3.162549	2.979566	С	-1.33028	-2.60184	2.510129
С	2.677619	4.364899	0.21643	C	-0.03945	-2.66376	3.064467
Н	3.017816	4.558854	-0.81178	С	0.11072	-2.36973	4.424512
Н	1.78002	4.970383	0.395252	С	-0.98004	-2.00069	5.199322
Н	3.464806	4.705633	0.90666	С	-2.24485	-1.89895	4.622782
С	3.641194	2.061031	0.029088	Н	1.103356	-2.41778	4.875375
Н	3.846217	2.184225	-1.04442	Н	-0.84594	-1.7728	6.258399
Н	4.532787	2.400767	0.579613	Н	-3.08489	-1.57468	5.237371
Н	3.487168	0.991779	0.228103	С	1.174391	-3.01286	2.221306
С	-2.01259	1.566873	4.372102	Н	0.885153	-2.88535	1.166062
Н	-3.07537	1.756667	4.588584	С	-3.82875	-2.07027	2.644715
Н	-1.9393	0.773998	3.611902	Н	-3.68622	-1.61845	1.650344
Н	-1.55042	1.184685	5.295229	С	2.349676	-2.06492	2.474794
С	-1.44016	3.963586	4.931688	Н	3.156327	-2.27466	1.755971
Н	-0.96227	4.892358	4.586522	Н	2.041687	-1.01562	2.353116
Н	-2.49368	4.179792	5.165732	Н	2.762432	-2.19652	3.487494
Н	-0.94058	3.66216	5.86555	С	1.602611	-4.4691	2.438772
С	-4.04541	-1.89771	-2.22508	Н	2.434827	-4.72711	1.766091
С	-2.68916	-2.26379	-2.16808	Н	1.942572	-4.616	3.476174
С	-1.79979	-1.9978	-3.22973	Н	0.776802	-5.17362	2.260727
С	-2.31468	-1.38262	-4.37296	C	-4.48496	-3.44426	2.466958
С	-3.65988	-1.03039	-4.45444	Н	-5.46112	-3.34445	1.966378
С	-4.51638	-1.28452	-3.38988	Н	-3.86233	-4.11882	1.863466
Н	-1.64879	-1.15524	-5.20642	Н	-4.64902	-3.92126	3.44572
Н	-4.0393	-0.54122	-5.35348	С	-4.76527	-1.14037	3.414414
Н	-5.56472	-0.98393	-3.45292	Н	-4.29952	-0.16037	3.589945
С	-0.32747	-2.35439	-3.12286	Н	-5.68707	-0.97924	2.836549
Н	-0.06119	-2.29063	-2.05768	Н	-5.05928	-1.56601	4.386268
С	-4.98465	-2.10806	-1.05018	2			
Н	-4.40913	-2.56603	-0.23338	Р	-1.94239	0.499201	-1.03371
С	-0.08033	-3.79129	-3.59732	Р	-0.43824	0.132435	1.269506
Н	0.98346	-4.05188	-3.48943	Ν	-0.1974	3.545924	1.325305
Н	-0.67343	-4.51799	-3.02318	Ν	-1.57262	3.821835	-0.40266
Н	-0.35706	-3.89896	-4.65786	Ν	-1.58582	-3.05746	1.211481
С	0.588245	-1.38211	-3.86395	Ν	-2.26651	-2.92044	-0.89899
Н	1.636778	-1.60581	-3.61663	С	-1.553	-0.83361	0.171704
Н	0.478924	-1.46704	-4.95676	С	-0.64035	4.927512	1.429726
Н	0.379618	-0.34262	-3.5691	Н	-1.40529	5.059654	2.21776
С	-5.51704	-0.77345	-0.52104	C	-0.93825	2.860511	0.373503
Н	-6.13208	-0.93843	0.378236	C	-1.79442	-2.17101	0.167943
Н	-4.68762	-0.09779	-0.26466	C	-1.23135	5.168696	0.036508
Н	-6.14406	-0.26825	-1.27265	Н	-2.12601	5.808018	0.061049
С	-6.12504	-3.06468	-1.4099				

С	-1.02408	1.51366	0.208008	Н	-6.20289	4.176613	0.986248
С	-2.57942	-4.28048	-0.49028	C	-4.38906	2.16103	1.638898
Н	-2.34366	-4.99757	-1.28778	Н	-3.58151	1.440855	1.4283
С	-1.6724	-4.43012	0.73316	Н	-4.4618	2.292835	2.729944
Н	-2.08737	-5.08941	1.508062	Н	-5.33855	1.726845	1.286795
Н	-0.48909	5.634497	-0.63601	C	0.124042	2.616585	3.569133
Н	0.202476	5.593439	1.662257	C	0.635364	2.91703	2.294225
Н	-3.64658	-4.40353	-0.22413	C	1.956594	2.574642	1.926463
Н	-0.68028	-4.81797	0.434209	C	2.757544	1.942625	2.880214
Н	-0.84825	0.300051	-1.95018	C	2.277582	1.679309	4.161386
С	1.957237	-0.86724	-0.28087	C	0.974663	2.017166	4.503036
С	1.060426	-0.34352	0.361048	Н	3.773869	1.64577	2.623562
С	2.931098	-1.5628	-1.07138	Н	2.924527	1.191231	4.89235
С	2.955625	-2.96904	-1.06085	Н	0.599122	1.778538	5.499847
С	3.825464	-0.8751	-1.9084	C	2.47718	2.878093	0.52825
С	3.846279	-3.66491	-1.87324	Н	1.709365	2.517623	-0.17857
Н	2.255234	-3.50666	-0.41809	C	-1.32935	2.876222	3.928945
С	4.714607	-1.57787	-2.71634	Н	-1.86661	3.1021	2.99482
Н	3.801817	0.214236	-1.92694	C	2.669499	4.384392	0.31191
С	4.727212	-2.973	-2.70526	Н	3.052971	4.578023	-0.70116
Н	3.849695	-4.75612	-1.85996	Н	1.731003	4.938568	0.427009
Н	5.399793	-1.0307	-3.36568	Н	3.398607	4.783919	1.033752
Н	5.422085	-3.52085	-3.34322	C	3.783912	2.157339	0.205698
С	-3.96398	3.344154	-0.54188	Н	4.048763	2.329368	-0.84807
С	-2.72343	3.516653	-1.18395	Н	4.614626	2.545105	0.81611
С	-2.57581	3.29609	-2.56714	Н	3.703427	1.074499	0.373255
С	-3.70168	2.922607	-3.30418	C	-1.99227	1.630406	4.522321
С	-4.93519	2.75123	-2.68311	Н	-3.06454	1.814102	4.693484
С	-5.06314	2.959471	-1.31435	Н	-1.8796	0.769096	3.847237
Н	-3.60929	2.732345	-4.37419	Н	-1.54797	1.355668	5.491429
Н	-5.80151	2.441742	-3.27092	C	-1.46069	4.072394	4.877898
Н	-6.03138	2.803893	-0.83212	Н	-0.99036	4.976013	4.463333
С	-1.21269	3.426633	-3.22403	Н	-2.5191	4.293786	5.084085
Н	-0.46496	3.198094	-2.4478	Н	-0.96702	3.854294	5.837737
С	-4.12233	3.508733	0.959138	C	-4.04776	-1.94638	-2.25805
Н	-3.17162	3.891234	1.357774	C	-2.70186	-2.32835	-2.11857
С	-1.0092	2.440669	-4.37537	C	-1.74647	-2.07404	-3.12799
Н	0.04298	2.448293	-4.69613	C	-2.18793	-1.45388	-4.29908
Н	-1.2743	1.415793	-4.07387	C	-3.52616	-1.09957	-4.46574
Н	-1.61899	2.709497	-5.25197	C	-4.44694	-1.34363	-3.45505
С	-0.98107	4.867724	-3.69315	Н	-1.47558	-1.229	-5.09294
Н	0.025645	4.984097	-4.12208	Н	-3.84589	-0.61249	-5.38896
Н	-1.71733	5.138986	-4.46586	Н	-5.48663	-1.03315	-3.58105
Η	-1.08907	5.581813	-2.86443	C	-0.28414	-2.44425	-2.92162
С	-5.21058	4.527779	1.307543	Н	-0.03331	-2.18702	-1.87774
Η	-5.2518	4.689373	2.395073	C	-5.04467	-2.10645	-1.12302
Н	-5.02384	5.495698	0.819712	Н	-4.51221	-2.5424	-0.2667

С	-0.06841	-3.95057	-3.1074	0	-0.93919	0.840274	-0.06494
Н	0.987888	-4.20663	-2.934	Н	-1.30349	0.826548	0.82666
Н	-0.68322	-4.53621	-2.41151	С	0.41198	0.884974	-0.00275
Н	-0.33231	-4.25278	-4.13305	С	1.108732	0.899042	1.208523
С	0.675321	-1.67121	-3.82419	С	1.116857	0.916285	-1.21054
Н	1.713521	-1.9226	-3.56084	С	2.502342	0.943661	1.208488
Н	0.53371	-1.93158	-4.88489	Н	0.556427	0.874381	2.15162
Н	0.548915	-0.58342	-3.71258	С	2.506658	0.960539	-1.19783
С	-5.5777	-0.74697	-0.66041	Н	0.550603	0.90502	-2.1422
Н	-6.23831	-0.87496	0.212147	С	3.209474	0.974426	0.008879
Н	-4.74943	-0.07539	-0.38813	Н	3.036588	0.954173	2.159963
Н	-6.15965	-0.25328	-1.45482	Н	3.049202	0.984722	-2.14445
С	-6.18215	-3.05795	-1.50371	Н	4.29903	1.008996	0.01222
Н	-5.79628	-4.0436	-1.80388	INID			
Н	-6.87116	-3.19815	-0.65708	INIB D	0 22 499	1 202590	0.00075
Н	-6.76549	-2.65665	-2.347	P	-0.22488	1.323582	-0.09065
С	-2.53915	-2.19712	3.29625	P	-0.15847	-1.43838	-0.24329
С	-1.42651	-2.69545	2.578909	N	-3.50262	-1.25907	-0.12/66
С	-0.16752	-2.83768	3.190553	N	-3.57208	0.92722	0.208701
С	-0.04549	-2.52958	4.550044	N	3.179733	-1.06506	-0.3695
С	-1.13408	-2.06413	5.274247	N	3.12649	1.145246	-0.24926
С	-2.36567	-1.88826	4.646265	С	0.95479	-0.01954	-0.25561
Н	0.923737	-2.63809	5.039953	С	-4.92478	-0.92737	-0.13879
Н	-1.02372	-1.82087	6.332521	Н	-5.30767	-0.93546	-1.17557
Н	-3.20373	-1.49486	5.222297	С	-2.73933	-0.1294	0.002773
С	1.045558	-3.29326	2.39968	С	2.350868	0.01438	-0.29049
Н	0.811547	-3.11863	1.33684	С	-4.93671	0.476706	0.46474
С	-3.89286	-2.01823	2.62413	Н	-5.6673	1.149501	-0.00407
Н	-3.70001	-1.61899	1.616038	С	-1.34168	-0.08267	-0.07515
С	2.296603	-2.47577	2.735633	С	4.531505	0.817403	-0.4737
Н	3.09259	-2.68517	2.004263	Н	5.187097	1.41834	0.169522
Н	2.086496	-1.39713	2.708402	С	4.565364	-0.67164	-0.13429
Н	2.687159	-2.73456	3.732209	Н	5.250862	-1.25218	-0.76637
С	1.313079	-4.78898	2.608697	Н	-5.13687	0.447799	1.549161
Н	2.162446	-5.12219	1.992101	Н	-5.50538	-1.64986	0.449377
Н	1.56284	-4.9853	3.663164	Н	4.810479	1.006504	-1.52652
н	0.437894	-5.40447	2.35613	Н	4.839857	-0.83318	0.922302
C	-4.62018	-3.36031	2.486123	Н	-0.95897	-1.04213	2.095692
н	-5 57178	-3 23261	1 945925	0	-1.20522	-1.15453	3.037257
н	-4 01461	-4 09654	1.941002	С	-3.16214	2.275926	0.447435
н	-4,84363	-3.77842	3.479993	С	-2.8824	3.099012	-0.66383
C	-4 79284	-1.00877	3.334913	С	-3.03599	2.738013	1.767202
ч	-4 26443	-0.0632	3 51974	С	-2.52797	4.425744	-0.4196
н	-5 6737	-0 79063	2 713360	С	-2.69221	4.080786	1.961938
н	-5.0757	-1 39527	4 298942	С	-2.44838	4.91799	0.881323
11	-5.15075	-1.37341	7.270742	Н	-2.29088	5.083505	-1.25537
PhOH				Н	-2.59392	4.466237	2.978891

Н	-2.1727	5.960292	1.051582	Н	1.486423	0.683471	-4.53528
С	-3.04807	-2.42621	-0.82531	С	3.097657	-2.72256	2.050002
С	-2.71092	-3.57705	-0.09319	Н	3.043277	-1.62259	2.006662
С	-2.9315	-2.3734	-2.22839	C	2.27229	-1.9853	-2.93825
С	-2.27398	-4.70037	-0.80139	Н	1.877787	-1.0291	-2.56455
С	-2.4875	-3.51881	-2.89253	C	4.509215	-3.13762	2.48262
С	-2.16181	-4.6734	-2.18687	Н	4.568586	-4.23279	2.580684
Н	-1.99561	-5.6019	-0.25341	Н	5.275116	-2.8318	1.75507
Н	-2.37871	-3.5003	-3.97953	Н	4.756919	-2.69553	3.459382
Н	-1.80856	-5.55669	-2.72227	C	2.068235	-3.17931	3.086833
С	2.771268	-2.4324	-0.47492	Н	1.047829	-2.96106	2.742784
С	2.359715	-2.91354	-1.73705	Н	2.147281	-4.26034	3.280262
С	2.766362	-3.25255	0.666448	Н	2.226665	-2.65391	4.040658
С	1.994476	-4.25584	-1.83879	C	1.277097	-2.47505	-3.98758
С	2.407582	-4.59639	0.510096	Н	0.304593	-2.68875	-3.51742
С	2.029209	-5.09507	-0.7285	Н	1.128738	-1.70001	-4.75427
Н	1.655342	-4.65185	-2.7954	Н	1.632612	-3.38124	-4.50219
Н	2.400568	-5.25312	1.381471	C	3.649265	-1.72984	-3.5589
Н	1.738592	-6.14223	-0.82926	Н	3.569976	-1.00959	-4.38837
С	2.623314	2.445945	-0.57748	Н	4.35522	-1.31951	-2.82145
С	2.313242	3.342244	0.462044	Н	4.077783	-2.66359	-3.95479
С	2.413125	2.777018	-1.92902	С	-2.7804	-3.59878	1.422104
С	1.828779	4.606516	0.119034	Н	-2.77703	-2.5547	1.764333
С	1.928952	4.054047	-2.22571	С	-3.21291	-1.11116	-3.0287
С	1.643005	4.96303	-1.21284	Н	-3.58569	-0.33561	-2.34442
Н	1.569133	5.313725	0.907503	С	-2.91519	2.536547	-2.07652
Н	1.754832	4.332103	-3.26775	Н	-2.49988	1.520678	-2.01269
Н	1.256967	5.952991	-1.46263	С	-3.21525	1.824561	2.966831
С	2.462192	2.931513	1.915254	Н	-3.27691	0.788455	2.601651
Н	2.358419	1.837045	1.938248	С	-2.01496	3.307719	-3.03906
С	2.643403	1.789452	-3.06124	Н	-1.94975	2.774189	-3.9992
Н	3.005136	0.844502	-2.63235	Н	-2.40631	4.314998	-3.25137
С	1.364287	3.512269	2.806212	Н	-0.99895	3.398089	-2.62401
Н	1.50457	4.592164	2.972033	C	-4.34381	2.432886	-2.61862
Н	0.374259	3.349981	2.353514	Н	-4.33938	1.977133	-3.62125
Н	1.380711	3.019734	3.790367	Н	-4.97899	1.811765	-1.96981
С	3.853184	3.291364	2.44784	Н	-4.80761	3.428351	-2.69657
Н	3.962682	2.974348	3.496397	C	-1.99249	1.879414	3.883926
Н	4.649227	2.813386	1.858445	Н	-1.88792	2.866125	4.361669
Н	4.011764	4.380042	2.404926	Н	-2.07509	1.123601	4.678473
С	3.709402	2.292661	-4.0393	Н	-1.07688	1.67198	3.313614
Н	4.661131	2.500773	-3.52781	C	-4.49716	2.162086	3.735874
Н	3.893897	1.545631	-4.82593	Н	-4.43832	3.180767	4.149638
Н	3.385882	3.222728	-4.53078	Н	-5.3881	2.120261	3.091526
С	1.329183	1.470244	-3.78047	Н	-4.6396	1.464334	4.57411
Н	0.571731	1.126433	-3.05952	С	-4.29451	-1.34344	-4.08819
Н	0.933585	2.358808	-4.29722	Н	-5.22651	-1.71759	-3.63857

Н	-4.51817	-0.40772	-4.62198	Н	4.859299	1.07691	-1.27414
Н	-3.96431	-2.08152	-4.83462	Н	4.79188	-1.06664	0.913842
С	-1.92535	-0.56685	-3.65656	Н	-0.45503	0.747287	1.546016
Н	-1.53876	-1.26014	-4.41996	0	-0.85687	-0.4286	2.568759
Н	-2.11665	0.401838	-4.14503	C	-3.21369	2.20832	0.414354
Н	-1.14737	-0.43143	-2.88826	C	-3.00095	3.010086	-0.72847
С	-4.08243	-4.25269	1.897675	C	-3.05204	2.705892	1.718913
Н	-4.96634	-3.73639	1.495038	C	-2.67488	4.351435	-0.53
Н	-4.13133	-5.30216	1.566863	C	-2.73314	4.061473	1.863442
Н	-4.14478	-4.23674	2.995868	C	-2.55717	4.877488	0.754609
С	-1.56131	-4.28212	2.044742	Н	-2.48967	4.996473	-1.38837
Н	-1.53015	-4.08042	3.125449	Н	-2.60194	4.473992	2.865038
Н	-1.59252	-5.37471	1.90631	Н	-2.30241	5.930181	0.8883
Н	-0.63331	-3.89882	1.594125	С	-2.99689	-2.47509	-0.92276
С	-0.16874	-0.83215	3.836183	С	-2.47063	-3.50589	-0.11713
С	0.931382	-0.10758	3.362872	С	-2.94523	-2.51251	-2.3273
С	-0.21163	-1.23477	5.175236	С	-1.94624	-4.62435	-0.77001
С	1.984051	0.191426	4.225452	С	-2.40719	-3.65298	-2.9325
Н	0.935995	0.217575	2.317065	С	-1.92071	-4.7012	-2.16064
С	0.843896	-0.92279	6.028502	Н	-1.51662	-5.4369	-0.18521
Н	-1.07883	-1.79914	5.521007	Н	-2.35615	-3.71126	-4.0223
С	1.951955	-0.21389	5.560756	Н	-1.49462	-5.58166	-2.64542
Н	2.841423	0.753631	3.845785	С	2.721369	-2.45668	-0.55559
Н	0.802312	-1.24321	7.071255	C	2.347101	-2.92574	-1.83441
Н	2.778035	0.025139	6.231302	C	2.663263	-3.27747	0.583228
TS1R				C	1.96156	-4.25992	-1.95593
D	0.25000	1 311820	0 147211	C	2.288987	-4.61614	0.4051
I D	-0.23909	1.311623	0.147211	C	1.947433	-5.10471	-0.84768
I N	-0.19043	-1.20030	-0.0505	Н	1.650828	-4.64694	-2.92594
N	-3.50094	-1.30417	-0.28375	Н	2.248651	-5.27651	1.273446
N	-3.39094	-1 09934	-0.42915	Н	1.648482	-6.14814	-0.96356
N	3 120502	1.097886	-0.42713	C	2.681192	2.417451	-0.36526
C C	0.951807	-0.02081	-0.25882	C	2.572225	3.355927	0.67513
C C	-4 93227	-0.02001	-0.23858	C	2.374775	2.752528	-1.70089
н	-5 3422	-0.99103	-0.22030	C	2.11873	4.640422	0.357194
n C	-2 7658	-0 16899	-0 14742	C	1.916451	4.043509	-1.96655
C C	2 345969	-0.02064	-0 2494	C	1.781408	4.980457	-0.94636
C C	-4 91608	0.320908	0.551089	Н	2.013471	5.380504	1.152493
н	-5 70131	1.025939	0.24764	Н	1.657047	4.319517	-2.99137
n C	-1 38877	-0.05583	-0 36244	Н	1.414794	5.983383	-1.17141
C C	4 539316	0.758258	-0 2649	C	2.914787	3.02032	2.114486
н	5 171114	1 264588	0 477157	Н	3.074982	1.933887	2.172765
C	4 544105	-0 76237	-0 11642	C	2.512685	1.770488	-2.85402
е Н	5.235893	-1.26671	-0.80431	Н	2.902214	0.819634	-2.46292
н	-4,99568	0.13789	1.635553	C	1.763855	3.377653	3.059196
H	-5,49588	-1.78744	0.273087	Н	1.646989	4.46919	3.146625
	5.47500	1.,0/	0.275007	Н	0.81465	2.956934	2.696867

Н	1.94926	2.969775	4.062973	Н	-5.09236	1.582392	-1.87166
С	4.213228	3.713594	2.54208	Н	-5.05631	3.185815	-2.64128
Н	4.471055	3.440592	3.576222	С	-2.06204	2.066623	3.954584
Н	5.055778	3.438717	1.890168	Н	-2.16543	3.043303	4.453109
Н	4.102574	4.808312	2.498051	Н	-2.07534	1.286131	4.728259
С	3.520418	2.276596	-3.89213	Н	-1.0798	2.014396	3.467134
Н	4.50421	2.46609	-3.43753	С	-4.55312	2.028227	3.615831
Н	3.647621	1.537809	-4.69753	Н	-4.63589	3.056627	4.001136
Н	3.178028	3.216443	-4.35061	Н	-5.39098	1.872451	2.920323
С	1.155329	1.476531	-3.50234	Н	-4.67204	1.338632	4.464631
Н	0.421882	1.147205	-2.75013	С	-4.60975	-1.74318	-4.05551
Н	0.756495	2.374154	-3.99989	Н	-5.44416	-2.10809	-3.43842
Н	1.256495	0.688092	-4.26484	Н	-4.9624	-0.88315	-4.64444
С	2.94492	-2.76536	1.985004	Н	-4.34063	-2.54572	-4.75904
Н	3.003125	-1.66649	1.948572	С	-2.26247	-0.80317	-4.05392
С	2.312872	-1.9858	-3.02968	Н	-1.91392	-1.55114	-4.78309
Н	1.917008	-1.0273	-2.66223	Н	-2.59972	0.081144	-4.61709
С	4.270152	-3.31303	2.526448	Н	-1.40727	-0.50914	-3.42675
Н	4.221442	-4.40853	2.62742	С	-3.751	-3.47783	2.075205
Н	5.119906	-3.08093	1.866553	Н	-4.45542	-2.70694	1.738262
Н	4.472161	-2.89033	3.521678	Н	-4.19589	-4.46552	1.875799
С	1.791091	-3.0996	2.931695	Н	-3.63663	-3.36593	3.163189
Н	0.844967	-2.70285	2.538048	С	-1.39998	-4.32451	2.032176
Н	1.688292	-4.18756	3.072026	Н	-1.22751	-4.04143	3.080441
Н	1.960317	-2.63962	3.916178	Н	-1.78697	-5.35666	2.017669
С	1.360764	-2.45718	-4.12743	Н	-0.42842	-4.31047	1.517415
Н	0.365936	-2.68202	-3.71139	C	-0.02151	-0.46699	3.552125
Н	1.247534	-1.67257	-4.89034	C	1.292835	0.077546	3.450406
Н	1.738746	-3.35654	-4.63765	C	-0.34952	-1.0596	4.806984
С	3.71362	-1.72547	-3.59183	C	2.194816	0.028738	4.507901
Н	3.66609	-1.00542	-4.42341	Н	1.582514	0.517155	2.493283
Н	4.385018	-1.31225	-2.82515	С	0.564303	-1.10792	5.852149
Н	4.160945	-2.65747	-3.97023	Н	-1.35034	-1.48561	4.916391
С	-2.38384	-3.34575	1.394943	C	1.850247	-0.56765	5.723894
Н	-2.00347	-2.32673	1.597625	Н	3.194138	0.459479	4.378211
С	-3.40584	-1.34973	-3.19331	Н	0.270402	-1.57843	6.794331
Н	-3.71968	-0.52681	-2.53529	Н	2.558618	-0.60725	6.551893
С	-3.08268	2.417944	-2.12844	8C			
Н	-2.599	1.428974	-2.08548	Р	-0.29981	1.435956	-0.30694
С	-3.18735	1.822479	2.946583	Р	-0.24265	-1.21461	0.475864
Н	-3.07531	0.775822	2.623963	Ν	-3.53303	-1.27476	-0.0832
С	-2.30692	3.23113	-3.16271	Ν	-3.70526	0.962489	-0.09662
Н	-2.25683	2.677983	-4.11225	Ν	3.11865	-1.03282	-0.04682
Н	-2.79175	4.197644	-3.37001	Ν	3.113461	1.177346	-0.25791
Н	-1.27966	3.420404	-2.81726	С	0.931929	0.113176	0.067968
С	-4.53514	2.218439	-2.57463	C	-4.96596	-0.99506	-0.16111
Н	-4.57246	1.739934	-3.56603				

Н	-5.344	-1.19522	-1.17902	C	1.812416	4.077918	-2.17424
С	-2.80601	-0.08836	-0.08706	C	1.544704	4.974713	-1.14423
С	2.292842	0.07694	-0.07621	Н	1.614657	5.340319	0.974849
С	-5.05503	0.493752	0.186483	Н	1.583185	4.353831	-3.20628
Н	-5.80136	1.02597	-0.42081	Н	1.112126	5.95119	-1.36963
С	-1.44941	0.019044	-0.07427	C	2.739982	3.047867	1.925287
С	4.489329	0.787907	-0.52054	Н	2.939675	1.96741	1.964482
Н	5.191256	1.458193	-0.0052	C	2.548351	1.823539	-3.03668
С	4.518441	-0.63511	0.038607	Н	2.859174	0.866926	-2.59475
Н	5.151222	-1.31517	-0.54886	C	1.616973	3.355722	2.917353
Н	-5.31501	0.64492	1.248332	Н	1.424483	4.437546	2.986036
Н	-5.53711	-1.62109	0.538559	Н	0.680112	2.857873	2.630186
Н	4.720845	0.809628	-1.60208	Н	1.891618	3.001564	3.922185
Н	4.879388	-0.63803	1.081837	C	4.032368	3.773548	2.3202
Н	-0.3877	2.085412	0.969214	Н	4.333863	3.50086	3.342802
0	-0.63641	-0.95191	2.173499	Н	4.857743	3.525302	1.63697
С	-3.29327	2.291972	0.227127	Н	3.888797	4.86477	2.286931
С	-2.95796	3.157851	-0.83478	C	3.663669	2.293968	-3.97581
С	-3.15471	2.682135	1.57108	Н	4.604373	2.465882	-3.43199
С	-2.56095	4.459641	-0.52437	Н	3.847867	1.546362	-4.76234
С	-2.76872	4.001419	1.835042	Н	3.386471	3.239126	-4.46793
С	-2.4863	4.884807	0.80022	C	1.25407	1.552792	-3.80858
Н	-2.28162	5.145498	-1.32409	Н	0.44943	1.239972	-3.12665
Н	-2.65956	4.329624	2.871015	Н	0.911715	2.451002	-4.34617
Н	-2.17669	5.906844	1.026176	Н	1.415606	0.759603	-4.55556
С	-3.0345	-2.41858	-0.79256	C	3.532902	-2.82766	2.228601
С	-2.62066	-3.55144	-0.06726	Н	3.477423	-1.73021	2.290925
С	-2.9696	-2.38116	-2.20096	C	1.998372	-1.91691	-2.56916
С	-2.18074	-4.66978	-0.78097	Н	1.651041	-0.93065	-2.22456
С	-2.52438	-3.52408	-2.87223	C	5.007085	-3.25221	2.153228
С	-2.13978	-4.66241	-2.17126	Н	5.078358	-4.35071	2.129143
Н	-1.85434	-5.55751	-0.23764	Н	5.504444	-2.87204	1.250382
Н	-2.46958	-3.51709	-3.9636	Н	5.561814	-2.89469	3.034034
Н	-1.79572	-5.54596	-2.71275	C	2.899843	-3.38508	3.503647
С	2.673007	-2.38507	-0.14205	Н	1.824047	-3.16362	3.550574
С	2.077267	-2.82322	-1.3486	Н	3.03813	-4.47439	3.579987
С	2.807553	-3.24865	0.962235	Н	3.374456	-2.93109	4.385165
С	1.560477	-4.11845	-1.39466	C	0.990875	-2.39643	-3.61082
С	2.297493	-4.54817	0.85606	Н	0.005522	-2.57631	-3.1568
С	1.662819	-4.97447	-0.30168	Н	0.873368	-1.63317	-4.39419
Н	1.059922	-4.46985	-2.29609	Н	1.323692	-3.32512	-4.10048
Н	2.381565	-5.22852	1.704367	C	3.378801	-1.7453	-3.21508
Н	1.246113	-5.98181	-0.35878	Н	3.32135	-1.05548	-4.07178
С	2.615514	2.477431	-0.56301	Н	4.11601	-1.3438	-2.50594
С	2.376503	3.383447	0.489318	Н	3.753666	-2.71362	-3.58106
С	2.334178	2.811588	-1.90265	C	-2.64353	-3.55933	1.451641
С	1.824692	4.628627	0.174076	Н	-2.56441	-2.51225	1.779494

С	-3.33059	-1.1447	-3.01376	C	-2.09444	-0.57807	-3.71968
Н	-3.68811	-0.36166	-2.33143	Н	-1.70723	-1.28481	-4.47025
С	-2.96706	2.640642	-2.26499	Н	-2.34305	0.362173	-4.23712
Н	-2.57241	1.61384	-2.21863	Н	-1.29477	-0.3743	-2.99081
С	-3.32658	1.710075	2.72788	C	-3.97418	-4.12077	1.965766
Н	-3.48589	0.704646	2.312053	Н	-4.82844	-3.54522	1.580929
С	-2.04548	3.431045	-3.19022	Н	-4.10269	-5.16641	1.644666
Н	-1.96364	2.9204	-4.16177	Н	-4.00934	-4.09353	3.065306
Н	-2.43205	4.444102	-3.38432	C	-1.45891	-4.3189	2.050208
Н	-1.03717	3.510825	-2.75522	Н	-1.43698	-4.18609	3.141666
С	-4.38702	2.564111	-2.83338	Н	-1.52696	-5.40156	1.858701
Н	-4.37172	2.14228	-3.85063	Н	-0.50701	-3.95024	1.637061
Н	-5.03165	1.928098	-2.21057	C	0.149959	-0.96476	3.261522
Н	-4.84128	3.565656	-2.88621	C	1.350241	-0.24221	3.337639
С	-2.0447	1.628399	3.562774	C	-0.30682	-1.64232	4.404511
Н	-1.82515	2.58653	4.059142	C	2.07816	-0.21667	4.526487
Н	-2.14222	0.85717	4.341602	Н	1.677214	0.318259	2.463201
Н	-1.19246	1.349778	2.927853	C	0.424449	-1.6021	5.5881
С	-4.53161	2.082566	3.597765	Н	-1.25525	-2.1778	4.339353
Н	-4.3847	3.071306	4.059314	C	1.625813	-0.89375	5.65806
Н	-5.46197	2.126672	3.011958	Н	3.008839	0.35543	4.566938
Н	-4.6646	1.349921	4.407356	Н	0.050579	-2.1295	6.467828
С	-4.4539	-1.43158	-4.01502	Н	2.197206	-0.86456	6.586631
Н	-5.34962	-1.82823	-3.51417				
Н	-4.73532	-0.5123	-4.55036				
Н	-4.13744	-2.17155	-4.7655				

S4. References

- S1 Z. Li, X. Chen, D. Andrada, G. Frenking, Z. Benkö, Y. Li, J. R. Harmer, C.-Y. Su, H. Grützmacher, *Angew. Chem. Int. Ed.* 2017, 56, 5744–5749; *Angew. Chem.* 2017, 129, 5838–5843.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision D.01*. Gaussian, Inc., Wallingford CT, 2009.
- S3 Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 364.
- S4 E. Glendening, J. Badenhoop, A. Reed, J. Carpenter, J. Bohmann, C. Morales, F. Weinhold, NBO 6.0, University of Wisconsin: Madison, WI, 2013.
- S5 G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834.
- S6 F. Neese, *WIREs Comput. Mol. Sci.* 2012, **2**, 73.