Supplementary Information

Controlling the gate-sorption properties of solid solutions of Werner complexes by varying component ratios

Shin-ichiro Noro,*a,b Yu Song,b Yutaro Tanimoto,b Yuh Hijikata,c Kazuya Kubo,d and Takayoshi Nakamura*e

a Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
b Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan.
c Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
d Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Akogun, Hyogo 678-1297, Japan
e Research Institute for Electronic Science, Hokkaido University, Sapporo 010-0020, Japan
Table of contents

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATR-IR spectra</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>TG analysis</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>UV-vis spectra</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Powder X-ray diffraction (PXRD) patterns</td>
<td>5-10</td>
</tr>
<tr>
<td>5</td>
<td>Acetone sorption properties</td>
<td>11-13</td>
</tr>
<tr>
<td>6</td>
<td>Theoretical calculations</td>
<td>14-15</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>16</td>
</tr>
</tbody>
</table>
1. ATR-IR spectra

Fig. S1. ATR-IR spectra of α-PAC-2-PF$_6$/CF$_3$SO$_3$ (x = @) (red, x = 1; blue, x = 0.75; green, x = 0.50; purple, x = 0.25; black, x = 0).

Fig. S2. Plot of x vs $I(847\text{cm}^{-1})/I(1448\text{cm}^{-1})$, where $I(847\text{cm}^{-1})$ and $I(1448\text{cm}^{-1})$ are intensities at each wavenumber. The bands at 847 and 1448 cm$^{-1}$ are assigned as a PF$_6^-$ ν_3 vibration and a pyridine ring stretching vibration, respectively.1,2 The solid line represents the least-squares linear fit.
2. TG analysis

![Graph showing TG curves of α-PAC-2-PF₆/CF₃SO₃ (x = @) (red, x = 1; blue, x = 0.75; green, x = 0.50; purple, x = 0.25; black, x = 0).

Fig. S3. TG curves of α-PAC-2-PF₆/CF₃SO₃ (x = @) (red, x = 1; blue, x = 0.75; green, x = 0.50; purple, x = 0.25; black, x = 0).
3. UV-vis spectra

Fig. S4. UV-vis spectra of α-PAC-2-PF$_6$ (red) and α-PAC-2-CF$_3$SO$_3$ (blue) in acetone solution (thick lines) and solid state (thin lines).
4. Powder X-ray diffraction patterns

Table S1. Unit cell parameters for \(\alpha\text{-PAC-2-PF}_6\text{/CF}_3\text{SO}_3 \ (x = @) \) derived from Pawley fitting.

<table>
<thead>
<tr>
<th>x</th>
<th>(a) / Å</th>
<th>(b) / Å</th>
<th>(c) / Å</th>
<th>(\beta) / °</th>
<th>(V) / Å(^3)</th>
<th>(R_p) / %</th>
<th>(R_{wp}) / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.546(2)</td>
<td>16.272(3)</td>
<td>16.851(3)</td>
<td>-</td>
<td>2892(1)</td>
<td>5.13</td>
<td>7.48</td>
</tr>
<tr>
<td>0.25</td>
<td>10.553(5)</td>
<td>16.253(5)</td>
<td>16.818(8)</td>
<td>-</td>
<td>2885(2)</td>
<td>8.66</td>
<td>12.45</td>
</tr>
<tr>
<td>0.25</td>
<td>10.571(1)</td>
<td>14.81(2)</td>
<td>18.30(2)</td>
<td>92.17(5)</td>
<td>2864(5)</td>
<td>8.18</td>
<td>12.62</td>
</tr>
<tr>
<td>0.5</td>
<td>10.462(5)</td>
<td>14.473(6)</td>
<td>18.213(8)</td>
<td>91.57(2)</td>
<td>2757(2)</td>
<td>3.00</td>
<td>4.07</td>
</tr>
<tr>
<td>0.75</td>
<td>10.482(5)</td>
<td>14.436(6)</td>
<td>17.953(6)</td>
<td>91.94(2)</td>
<td>2715(2)</td>
<td>3.14</td>
<td>4.31</td>
</tr>
<tr>
<td>1</td>
<td>10.434(6)</td>
<td>14.323(7)</td>
<td>17.622(8)</td>
<td>92.03(2)</td>
<td>2632(2)</td>
<td>3.72</td>
<td>5.43</td>
</tr>
</tbody>
</table>

Fig. S5. Pawley fit of the PXRD pattern of \(\alpha\text{-PAC-2-PF}_6\text{/CF}_3\text{SO}_3 \ (x = 1) \). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be \(P2_1/c \) by the indexing routine of the TOPAS program package.
Fig. S6. Pawley fit of the PXRD pattern of α-PAC-2-PF$_6$/CF$_3$SO$_3$ (x = 0.75). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S7. Pawley fit of the PXRD pattern of α-PAC-2-PF$_6$/CF$_3$SO$_3$ (x = 0.5). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.
Fig. S8. Pawley fit of the PXRD pattern of α-PAC-2-PF₆/CF₃SO₃ (x = 0.25). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $P2_1/c$ by the indexing routine of the TOPAS program package.

Fig. S9. Pawley fit of the PXRD pattern of α-PAC-2-PF₆/CF₃SO₃ (x = 0.25). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $Pbcn$ by the indexing routine of the TOPAS program package.
Fig. S10. Pawley fit of the PXRD pattern of α-PAC-2-PF$_6$/CF$_3$SO$_3$ ($x = 0$). The blue, red, and green lines represent the experimental, calculated and difference profile, respectively. The space group was determined to be $Pbcn$ by the indexing routine of the TOPAS program package.

Fig. S11. Composition ratio-dependent cell parameters of α-PAC-2-PF$_6$/CF$_3$SO$_3$ ($x = @$). Red, green, purple, and blue symbols indicate a, b, c, and V, respectively.
Fig. S12. PXRD patterns of α-PAC-2-PF$_6$/CF$_3$SO$_3$($x = 0.75$) before (red) and after (blue) an exposure to a saturated acetone vapor.

Fig. S13. PXRD patterns of α-PAC-2-PF$_6$/CF$_3$SO$_3$($x = 0.5$) before (red) and after (blue) an exposure to a saturated acetone vapor.
Fig. S14. PXRD patterns of α-PAC-2-PF$_6$/CF$_3$SO$_3$(x = 0.25) before (red) and after (blue) an exposure to a saturated acetone vapor.
5. Acetone sorption properties

Fig. S15. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in α-PAC-2-PF$_6$/CF$_3$SO$_3$ ($x = 0.75$) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (α-PAC-2-PF$_6$: α-PAC-2-CF$_3$SO$_3$ = 0.75 : 0.25) calculated using the acetone adsorption/desorption data of pure α-PAC-2-PF$_6$ and α-PAC-2-CF$_3$SO$_3$.
Fig. S16. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in \(\textit{a-PAC-2-PF}_6/\textit{CF}_3\textit{SO}_3 \) (\(\textit{x} = 0.5 \)) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (\(\textit{a-PAC-2-PF}_6 : \textit{a-PAC-2-CF}_3\textit{SO}_3 = 0.5 : 0.5 \)) calculated using the acetone adsorption/desorption data of pure \(\textit{a-PAC-2-PF}_6 \) and \(\textit{a-PAC-2-CF}_3\textit{SO}_3 \).
Fig. S17. Acetone adsorption/desorption isotherms (adsorption, closed symbols; desorption, open symbols) in a-PAC-2-PF$_6$/CF$_3$SO$_3$ ($x = 0.25$) at 288 K. The solid and dashed lines indicate the adsorption/desorption isotherms of physical mixture (a-PAC-2-PF$_6$: a-PAC-2-CF$_3$SO$_3 = 0.25 : 0.75$) calculated using the acetone adsorption/desorption data of pure a-PAC-2-PF$_6$ and a-PAC-2-CF$_3$SO$_3$.
6. Theoretical calculations

![Diagram](image)

$E_b = -7.7 \text{ kcal/mol}$

$E_b = -4.1 \text{ kcal/mol}$

$E_b = -3.1 \text{ kcal/mol}$

Fig. S18. Optimized structures of (a) $\{\text{Cu(PF}_{6})_{2}(\text{py})_{4}\} \cdot \text{acetone}$, (b) $\{\text{Cu(CF}_{3}\text{SO}_{3})_{2}(\text{py})_{4}\} \cdot \text{acetone}$ with the interaction between acetone and F/O atoms of CF$_3$SO$_3$ anion, and (c) $\{\text{Cu(CF}_{3}\text{SO}_{3})_{2}(\text{py})_{4}\} \cdot \text{acetone}$ with the interaction between
acetone and F atom of CF₃SO₃. The binding energy of acetone for [Cu(PF₆)₂(py)₄] was larger than those for [Cu(CF₃SO₃)₂(py)₄].
7. References
