Novel insights into the metal binding ability of ZinT periplasmic protein from *Escherichia coli* and *Salmonella enterica*

Denise Bellotti,^{a,b} Magdalena Rowińska-Żyrek,^b Maurizio Remelli^{*a}

^aDepartment of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy. E-mail: rmm@unife.it

^bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland

Electronic Supplementary Information (ESI)

Table S1. Spectroscopic parameters for Cu(II)-L1 (Ac-HGHHSH-NH₂) system at T=298 K, I=0.1 mol dm⁻³ (NaClO₄) and M:L molar ratio = 0.9:1; C_{Cu(II)} = 0.45 · 10⁻³ mol dm⁻³.

	UV-Vis		CD		EPR		Suggested coordination mode
Species	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	A// (G)	gıı	
[CuH ₂ L] ⁴⁺	676	12.5	233	-1.33	163.7	2.285	2N _{Im}
[CuHL] ³⁺	637	34.3	592 248 229	-0.16 1.43 -1.50	-	-	3N _{Im}
[CuL] ²⁺	608	43.1	566 247 231	-0.17 2.23 -1.04	180.4	2.245	2Nım, N ⁻
[CuH-1L]+	582	56.8	625 489 327 249 230	0.20 0.17 -0.38 2.17 -1.63	-	-	
[CuH-2L]	560	76.1	614 489 372 327 257 231	0.43 0.16 0.22 -0.58 2.52 -1.05	185.1	2.205	2Nım, 2N⁻
[CuH-3L] ⁻	523	74.7	620 484 323 292 258 231	0.77 -0.64 0.46 -0.58 3.91 6.20	191.2	2.194	Nım, 3N⁻

Table S2. Spectroscopic parameters for Cu(II)-L2 (Ac-HGHHAH-NH₂) system at *T*=298 K, *I*=0.1 mol dm⁻³ (NaClO₄) and M:L molar ratio = 0.9:1; $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

	UV-Vis		CD		EPR		Suggested coordination mode
Species	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	A _{//} (G)	gıı	
[CuH ₂ L] ⁴⁺	653	29.8	233	-1.50	161.3	2.282	2N _{Im}
[CuHL] ³⁺	626	51.2	575 315 246 231	-0.23 0.19 1.47 -1.47	182.5	2.250	3N _{Im}
[CuL] ²⁺	600	55.8	571 354 246 230	-0.23 0.16 1.69 -1.74	175.3	2.218	2N _{im} , N⁻
[CuH₋1L]+	586	72.0	618 548 492 355 314 254 232	0.10 -0.09 0.08 0.36 -0.17 1.24 -3.33	-	-	
[CuH-2L]	565	97.6	618 492 356 311 264 232	0.26 0.12 0.61 -0.56 1.20 -4.85	175.5	2.200	2N _{Im} , 2N⁻
[CuH-₃L] ⁻	540	104.1	639 540 477 336 300 256 232	0.28 0.04 -0.17 0.14 -0.52 2.12 2.82	195.1	2.188	Nım, 3N⁻ (apical Nım)

	UV-Vis		CD		EPR		Suggested coordination mode
Species	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	A// (G)	gıı	
[CuH ₂ L] ⁴⁺	654	20.87	232	-7.34	163.3	2.278	2Nım, COO⁻
[CuHL] ³⁺	603	46.0	232 254 339	-5.78 1.29 -0.47	-	-	3Nım, COO⁻
[CuL] ²⁺	543	73.67	233 251 340 485 549 647	-2.31 3.82 -1.29 0.35 -0.32 0.31	194.4	2.197	3Nım, N⁻
[CuH-1L]+	530	93.1	233 251 340 488 550 647	-2.31 4.61 -1.53 0.42 -0.40 0.39	194.4	2.200	2Nım, 2N⁻
[CuH-2L]	544	87.7	233 263 341 487 550 658	-4.69 3.27 -0.86 0.21 -0.38 0.29	201.4	2.200	2Nım, 2N⁻ (apical ε-NH₂)
[CuH₋₃L] [−]	548	82.8	233 268 343 556	-8.47 2.59 -0.40 -0.40	201.4	2.200	2Nım, 2N⁻ (apical ε-NH₂)

Table S3. Spectroscopic parameters for Cu(II)-L3 (Ac-DHIIAPRKSSHFH-NH₂) system at T=298 K, I=0.1 mol dm⁻³ (NaClO₄) and M:L molar ratio = 0.9:1; C_{Cu(II)} = 0.45 · 10⁻³ mol dm⁻³.

	UV-Vis		CD		EPR		Suggested coordination mode
Species	λ (nm)	$\Delta \epsilon$ (M ⁻¹ cm ⁻¹)	λ (nm)	$\Delta\epsilon$ (M ⁻¹ cm ⁻¹)	A _{//} (G)	gıı	
[CuH ₂ L] ⁴⁺	650	26.58	233	-6.65	173.3	2.280	2N _{Im} , COO ⁻
[CuHL] ³⁺	610	40.94	233 254 342	-2.31 1.07 -0.61	-	-	3Nım, COO⁻
[CuL] ²⁺	608	68.48	233 249 342 489 549 635	-2.26 3.71 -1.47 0.31 -0.36 0.38	194.2	2.200	3Nım, N⁻
[CuH-1L] ⁺	531	93.52	232 249 342 488 549 635	-0.78 5.64 -2.13 0.44 -0.51 0.44	194.2	2.197	2Nım, 2N⁻
[CuH-2L]	531	93.52	232 250 341 488 544 635	-1.29 4.84 -1.40 0.28 -0.51 0.44	194.2	2.197	2Nım, 2N⁻
[CuH₋₃L] [−]	531	93.52	233 261 338 538 635	-1.07 4.23 -0.43 -0.58 0.44	194.2	2.197	2Nım, 2N⁻

Table S4. Spectroscopic parameters for Cu(II)-L4 (Ac-DHIIAPRKSAHFH-NH₂) system at T=298 K, I=0.1 mol dm⁻³ (NaClO₄) and M:L molar ratio = 0.9:1; C_{Lu(II)} = 0.45 · 10⁻³ mol dm⁻³.

Figure S1. A) ESI-MS spectrum for Cu(II)/L1 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

Figure S2. A) ESI-MS spectrum for Cu(II)/L2 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

Figure S3. A) ESI-MS spectrum for Cu(II)/L3 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

A)

Figure S4. A) ESI-MS spectrum for Cu(II)/L4 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

Figure S5. Species distribution diagram relative to Cu(II)/L2 complexes; M:L molar ratio = 0.9:1; $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S6. Species distribution diagram relative to Cu(II)/L3 complexes; M:L molar ratio = 0.9:1; $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S7. Species distribution diagram relative to Cu(II)/L4 complexes; M:L molar ratio = 0.9:1; $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S8. EPR spectra for Cu(II) complexes with L1, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.9 \cdot 10^{-3}$ mol dm⁻³.

Figure S9. Vis absorption spectra for Cu(II) complexes with L2, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S10. CD spectra for Cu(II) complexes with L2, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S11. EPR spectra for Cu(II) complexes with L2, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.9 \cdot 10^{-3}$ mol dm⁻³.

Figure S12. Vis absorption spectra for Cu(II) complexes with L3, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S13. CD spectra for Cu(II) complexes with L3, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S14. EPR spectra for Cu(II) complexes with L3, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.9 \cdot 10^{-3}$ mol dm⁻³.

Figure S15. Vis absorption spectra for Cu(II) complexes with L4, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S16. CD spectra for Cu(II) complexes with L4, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³, optical path 1 cm.

Figure S17. EPR spectra for Cu(II) complexes with L4, M:L ratio = 0.9:1, $C_{Cu(II)} = 0.9 \cdot 10^{-3}$ mol dm⁻³.

Figure S18. A) ESI-MS spectrum for Zn(II)/L1 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

Figure S19. A) ESI-MS spectrum for Zn(II)/**L2** system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

A)

Figure S20. A) ESI-MS spectrum for Zn(II)/L3 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. $C_L = 0.5 \cdot 10^{-3}$ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

Figure S21. A) ESI-MS spectrum for Zn(II)/L4 system at L:M molar ratio=1:0.9 in MeOH:H₂O (1:1) mixture solution at pH=7. C_L = 0.5 \cdot 10⁻³ mol dm⁻³. B) Comparison of experimental and simulated isotopic pattern of the chosen metal complex.

A)

Figure S22. Species distribution diagram relative to Zn(II)/L2 complexes; M:L molar ratio = 0.9:1; $C_{Zn(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S23. Species distribution diagram relative to Zn(II)/L3 complexes; M:L molar ratio = 0.9:1; $C_{Zn(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S24. Species distribution diagram relative to Zn(II)/L4 complexes; M:L molar ratio = 0.9:1; $C_{Zn(II)} = 0.45 \cdot 10^{-3}$ mol dm⁻³.

Figure S25. Competition plots for a solution containing equimolar concentration ($1 \cdot 10^{-3}$ mol dm⁻³) of A) Cu(II), **L1** = Ac-HGHHSH-NH₂ and **L2** = Ac-HGHHAH-NH₂; B) Cu(II), **L3** = Ac-DHIIAPRKSSHFH-NH₂ and **L4** = Ac-DHIIAPRKSAHFH-NH₂.

Figure S26. Competition plots for a solution containing equimolar concentration ($1 \cdot 10^{-3}$ mol dm⁻³) of A) Zn(II), **L1** = Ac-HGHHSH-NH₂ and **L2** = Ac-HGHHAH-NH₂; B) Zn(II), **L3** = Ac-DHIIAPRKSSHFH-NH₂ and **L4** = Ac-DHIIAPRKSAHFH-NH₂.

Figure S27. Competition plots for a solution containing equimolar concentration $(1 \cdot 10^{-3} \text{ mol dm}^{-3})$ of metal ion, **L1** = Ac-HGHHSH-NH₂, **L2** = Ac-HGHHAH-NH₂, **L3** = Ac-DHIIAPRKSSHFH-NH₂, **L4** = Ac-DHIIAPRKSAHFH-NH₂ and calcitermin VAIALKAAHYHTHKE. A) Cu(II), B) Zn(II).

Figure S28. Competition plots for a solution containing equimolar concentration $(1 \cdot 10^{-3} \text{ mol dm}^{-3})$ of metal ion, **L1** = Ac-HGHHSH-NH₂, **L2** = Ac-HGHHAH-NH₂, **L3** = Ac-DHIIAPRKSSHFH-NH₂, **L4** = Ac-DHIIAPRKSAHFH-NH₂, *E. coli* ZnuA peptide Ac-MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW-NH₂ and *E. coli* ZnuA peptide Ac-GHFTVNPEIQPGAQRLHE-NH₂. A) Zn(II), B) Cu(II).

Figure S29. Comparison of near-UV CD spectra of L3 apo-peptide and its Cu(II) and Zn(II) complexes. M:L molar ratio = 0.9:1, $C_L = 0.1 \cdot 10^{-3}$ mol dm⁻³. Optical path 0.01 cm. A) pH = 4.5; B) pH = 7; C) pH = 9.

Figure S30. Comparison of near-UV CD spectra of L4 apo-peptide and its Cu(II) and Zn(II) complexes. M:L molar ratio = 0.9:1, $C_L = 0.1 \cdot 10^{-3}$ mol dm⁻³. Optical path 0.01 cm. A) pH = 4.5; B) pH = 7; C) pH = 9.