Terahertz time-domain absorption spectra of Cu (I) complexes bearing tetraphosphine ligands: the bridge between C-H $\cdots\pi$, $\pi\cdots\pi$ interactions and photoluminescence properties

Xun Pan, †^{ab} Xiao-Nan Kuang, †^{ab} Ning Zhu, ^a Guo Wang, ^a Yu-Ping Yang, ^c Jian-

Ming Liu, ^d Zhong-Feng Li, ^a Xiu-Lan Xin, ^e Hong-Liang Han, ^a Qiong-Hua Jin, ^{*ab},

Zhi-Gang Ren, *f and Jiang-Wei Zhang *g

^a Department of Chemistry, Capital Normal University, Beijing 100048, China Tel

586-10- 68903033, Fax 86-10-68902320, Email: jingh@ cnu.edu.cn,

jinqh204@163.com

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ^c School of Science, Minzu University of China, Beijing 100081, China

^d School of Mathematical Sciences, Peking University, Beijing 100871, China

^e School of Food and Chemical Engineering, Beijing Technology and Business

University, Beijing 100048, China

^f College of Chemistry, Chemical Engineering and Materials Science, Soochow

University, Suzhou 215123, China, Email: rezhigang@suda.edu.cn

^g State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Email: <u>jwzhang@dicp.ac.cn</u>.

Contents

- 1. Fig. S1 The molecular structure of complex 2.
- 2. Fig. S2 The molecular structure of complex 3.
- 3. Fig. S3 The molecular structure of complex 4.
- 4. Fig. S4 The UV-vis spectra of complexes and ligands
- 5. Fig. S5 The THz absorption spectra of complexes 2-4 at ambient temperature with their ligands.
- **6.** Fig. S6 Natural transition orbitals for the ten absorptions in Table S3 (isovalue 0.02).
- 7. Fig. S7 The NMR spectra of all complexes.
- 8. Table. S1 Selected bond length (Å) and angles (°) for complexes 1-4.
- 9. Table. S2 Detailed information about five and six-membered rings in complexes.
- **10. Table. S3** The excitation and emission data of the related ligands in the solid state at ambient temperature.
- **11. Table. S4** Energy, oscillator strength and major contribution of the calculated transitions for complexes **1-4**.
- **12. Table. S5** THz spectral data for ligands and complexes **1-4** at ambient temperature.

Fig. S1 The 2D mesh structure through a pair of $\pi \cdots \pi$ interaction along the diagonal direction of the ab axes for complex **2** (A layer).

Fig. S2 Structure of complex **3**: (a) coordination environment of Cu (I). Thermal ellipsoids drawn at the 30% probability level. All hydrogen atoms and solvent molecules are omitted for clarity. (d) The 2D mesh-like stacked structure of complex **3**. Some hydrogen atoms and benzenes are omitted for clarity.

Fig. S3 Structure of complex 4: (a) coordination environment of Cu (I). Thermal ellipsoids drawn at the 30% probability level. (d) The 3D structure of complex 4. Some hydrogen atoms and benzenes are omitted for clarity.

Fig. S4 (a) The UV-vis spectra of all ligands used in synthesizing complexes. (b) complex 1 and its ligands. (c) complex 2 and its ligands. (d) complex 3 and its ligands. (e) complex 4 and its ligands.

Fig. S5 The THz absorption spectra of complexes 2-4 at ambient temperature with their ligands

Complex 1

Complex 3

Fig. S6 Fig. S6 Natural transition orbitals for the ten absorptions in Table S4 (isovalue = 0.02). Left is for occupied and right is for unoccupied orbitals. Since each contribution is not dominant, natural transition orbitals were calculated so that the absorption can be attributed to one transition.

Fig. S7 The NMR spectra of all complexes.

Complex 1			
bond length (Å)		bond angle (°)	
Cu(1)-N(1)	2.105(3)	N(2)-Cu(1)-N(1)	80.84(13)
Cu(1)-N(2)	2.039(3)	N(2)-Cu(1)-P(2)	120.65(9)
Cu(1)-P(1)	2.2543(11)	N(1)-Cu(1)-P(2)	131.48(9)
Cu(1)-P(2)	2.2325(11)	N(2)-Cu(1)-P(1)	111.37(10)
Cu(2)-N(5)	2.071(3)	N(1)-Cu(1)-P(1)	107.68(10)
Cu(2)- N(6)	2.057(3)	P(2)-Cu(1)-P(1)	103.34(4)
Cu(2)- P(3)	2.2359(11)	N(6)-Cu(2)-N(5)	81.14(13)
Cu(2)- P(4)	2.2332(11)	N(5)-Cu(2)-P(4)	123.92(10)
		N(5)-Cu(2)-P(3)	111.63(10)
		N(6)-Cu(2)-P(4)	115.68(10)
		N(6)-Cu(2)-P(3)	120.13(10)
		P(4)-Cu(2)-P(3)	104.30(4)
Complex 2			
bond length (Å)		bond angle (°)	
Cu(1)-N(1)	2.058(4)	N(2)-Cu(1)-N(1)	81.82(15)
Cu(1)-N(2)	2.065(4)	N(2)-Cu(1)-P(2)	118.77(10)
Cu(1)-P(1)	2.2376(12)	N(1)-Cu(1)-P(2)	119.30(10)
Cu(1)-P(2)	2.2316(12)	N(2)-Cu(1)-P(1)	113.45(11)
		N(1)-Cu(1)-P(1)	121.70(10)
		P(2)-Cu(1)-P(1)	102.07(4)
Complex 3			
bond length (Å)		bond angle (°)	
Cu(1)-N(1)	2.034(6)	N(2)-Cu(1)-N(1)	
Cu(1)-N(2)	2.053(8)	N(2)-Cu(1)-P(2)	109.97(2)
Cu(1)-P(1)	2.222(3)	N(1)-Cu(1)-P(2)	123.17(2)
Cu(1)-P(2)	2.226(2)	N(2)-Cu(1)-P(1)	129.2(2)
		N(1)-Cu(1)-P(1)	111.4(2)
		P(2)-Cu(1)-P(1)	102.55(1)
Complex 4			
bond length (Å)		bond angle (°)	
Cu(1)-N(1)	2.0621(17)	N(2)-Cu(1)-N(1)	80.70(7)
Cu(1)-N(2)	2.0482(17)	N(2)-Cu(1)-P(2)	122.92(5)
Cu(1)-P(1)	2.2583(6)	N(1)-Cu(1)-P(2)	129.43(5)
Cu(1)-P(2)	2.2132(5)	N(2)-Cu(1)-P(1)	113.31(5)
		N(1)-Cu(1)-P(1)	106.10(5)
		P(2)-Cu(1)-P(1)	103.15(2)

 Table S1 Selected bond length (Å) and angles (°) for complexes 1-4

		-
Complex 1	Cg(1)	$Cu(1) \rightarrow N(1) \rightarrow C(6) \rightarrow C(5) \rightarrow N(2)$
	Cg(2)	$Cu(2) \rightarrow N(5) \rightarrow C(20) \rightarrow C(19) \rightarrow N(6)$
	Cg(3)	$Cu(1) \rightarrow P(1) \rightarrow C(41) \rightarrow N(9) \rightarrow C(54) \rightarrow P(2)$
	Cg(4)	$Cu(2) \rightarrow P(3) \rightarrow C(82) \rightarrow N(10) \rightarrow C(81) \rightarrow P(4)$
	Cg(5)	$N(1) \rightarrow C(6) \rightarrow C(7) \rightarrow C(8) \rightarrow C(9) \rightarrow C(10)$
	Cg(6)	$N(2) \rightarrow C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow C(4) \rightarrow C(5)$
	Cg(7)	$N(3) \rightarrow C(11) \rightarrow C(12) \rightarrow N(4) \rightarrow C(13) \rightarrow C(14)$
	Cg(8)	$N(5) \rightarrow C(20) \rightarrow C(21) \rightarrow C(22) \rightarrow C(23) \rightarrow C(24)$
	Cg(9)	$N(6) \rightarrow C(15) \rightarrow C(16) \rightarrow C(17) \rightarrow C(18) \rightarrow C(19)$
	Cg(10)	$N(7) \rightarrow C(26) \rightarrow C(25) \rightarrow N(8) \rightarrow C(28) \rightarrow C(27)$
	Cg(11)	$C(4) \rightarrow C(5) \rightarrow C(6) \rightarrow C(7) \rightarrow C(11) \rightarrow C(12)$
	Cg(12)	$C(18) \rightarrow C(19) \rightarrow C(20) \rightarrow C(21) \rightarrow C(26) \rightarrow C(25)$
	Cg(13)	$C(29) \rightarrow C(33) \rightarrow C(32) \rightarrow C(31) \rightarrow C(30) \rightarrow C(34)$
	Cg(14)	$C(35) \rightarrow C(36) \rightarrow C(37) \rightarrow C(38) \rightarrow C(39) \rightarrow C(40)$
	Cg(15)	$C(42) \rightarrow C(43) \rightarrow C(44) \rightarrow C(45) \rightarrow C(46) \rightarrow C(47)$
	Cg(16)	$C(48) \rightarrow C(49) \rightarrow C(50) \rightarrow C(51) \rightarrow C(52) \rightarrow C(53)$
	Cg(17)	$C(57) \rightarrow C(58) \rightarrow C(59) \rightarrow C(60) \rightarrow C(61) \rightarrow C(62)$
	Cg(18)	$C(63) \rightarrow C(64) \rightarrow C(65) \rightarrow C(66) \rightarrow C(67) \rightarrow C(68)$
	Cg(19)	$C(69) \rightarrow C(70) \rightarrow C(71) \rightarrow C(72) \rightarrow C(73) \rightarrow C(74)$
	Cg(20)	$C(75) \rightarrow C(76) \rightarrow C(77) \rightarrow C(78) \rightarrow C(79) \rightarrow C(80)$
Complex 2	Cg(1)	$Cu(1) \to N(1) \to C(5) \to C(6) \to N(2)$
	Cg(2)	$Cu(1) \rightarrow P(1) \rightarrow C(27) \rightarrow N(3) \rightarrow C(29) \rightarrow P(2)$
	Cg(3)	$N(1) \rightarrow C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow C(4) \rightarrow C(5)$
	Cg(4)	$N(2) \rightarrow C(6) \rightarrow C(7) \rightarrow C(8) \rightarrow C(9) \rightarrow C(10)$
	Cg(5)	$C(4) \rightarrow C(5) \rightarrow C(6) \rightarrow C(7) \rightarrow C(12) \rightarrow C(11)$
	Cg(6)	$C(15) \rightarrow C(16) \rightarrow C(17) \rightarrow C(18) \rightarrow C(19) \rightarrow C(20)$
	Cg(7)	$C(21) \rightarrow C(22) \rightarrow C(23) \rightarrow C(24) \rightarrow C(25) \rightarrow C(26)$
	Cg(8)	$C(30) \rightarrow C(31) \rightarrow C(32) \rightarrow C(33) \rightarrow C(34) \rightarrow C(35)$
	Cg(9)	$C(36) \rightarrow C(37) \rightarrow C(38) \rightarrow C(39) \rightarrow C(40) \rightarrow C(41)$
	Cg(10)	$Cu(2) \to N(4) \to C(47) \to C(46) \to N(5)$
	Cg(11)	$Cu(2) \to P(3) \to C(68) \to N(6) \to C(70) \to P(4)$
	Cg(12)	$N(4) \rightarrow C(47) \rightarrow C(48) \rightarrow C(49) \rightarrow C(50) \rightarrow C(51)$
	Cg(13)	$N(5) \rightarrow C(42) \rightarrow C(43) \rightarrow C(44) \rightarrow C(45) \rightarrow C(46)$
Complex 3	Cg(1)	$Cu(1) \to N(1) \to C(6) \to C(5) \to N(2)$
	Cg(2)	$Cu(1) \to P(1) \to C(33) \to N(3) \to C(31) \to P(2)$
	Cg(3)	$N(1) \rightarrow C(6) \rightarrow C(7) \rightarrow C(8) \rightarrow C(9) \rightarrow C(10)$
	Cg(4)	$N(2) \rightarrow C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow C(4) \rightarrow C(5)$
	Cg(5)	$C(4) \rightarrow C(5) \rightarrow C(6) \rightarrow C(7) \rightarrow C(12) \rightarrow C(11)$
	Cg(6)	$C(13) \rightarrow C(14) \rightarrow C(15) \rightarrow C(16) \rightarrow C(17) \rightarrow C(18)$
	Cg(7)	$C(19) \rightarrow C(20) \rightarrow C(21) \rightarrow C(22) \rightarrow C(23) \rightarrow C(24)$
	Cg(8)	$C(25) \rightarrow C(26) \rightarrow C(27) \rightarrow C(28) \rightarrow C(29) \rightarrow C(30)$
	Cg(9)	C(34) - C(35) - C(36) - C(37) - C(38) - C(39)

Table. S2 Detailed information about five and six-membered rings in complexes.

	Cg(10)	$C(40) \rightarrow C(41) \rightarrow C(42) \rightarrow C(43) \rightarrow C(44) \rightarrow C(45)$
	Cg(11)	$C(46) \rightarrow C(47) \rightarrow C(48) \rightarrow C(49) \rightarrow C(50) \rightarrow C(51)$
Complex 4	Cg(1)	$Cu(1) \to N(1) \to C(5) \to C(9) \to N(2)$
	Cg(2)	$Cu(1) \rightarrow P(1) \rightarrow C(25) \rightarrow N(3) \rightarrow C(38) \rightarrow P(2)$
	Cg(3)	$N(1) \rightarrow C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow C(4) \rightarrow C(5)$
	Cg(4)	$N(2) \rightarrow C(9) \rightarrow C(8) \rightarrow C(10) \rightarrow C(11) \rightarrow C(12)$
	Cg(5)	$C(4) \to C(5) \to C(9) \to C(8) \to C(7) \to C(6)$
	Cg(6)	$C(13) \rightarrow C(14) \rightarrow C(15) \rightarrow C(16) \rightarrow C(17) \rightarrow C(18)$
	Cg(7)	$C(19) \rightarrow C(20) \rightarrow C(21) \rightarrow C(22) \rightarrow C(23) \rightarrow C(24)$
	Cg(8)	$C(26) \rightarrow C(27) \rightarrow C(28) \rightarrow C(29) \rightarrow C(30) \rightarrow C(31)$
	Cg(9)	$C(32) \rightarrow C(33) \rightarrow C(34) \rightarrow C(35) \rightarrow C(36) \rightarrow C(37)$
	Cg(10)	$C(39) \rightarrow C(40) \rightarrow C(41) \rightarrow C(42) \rightarrow C(43) \rightarrow C(44)$
	Cg(11)	$C(45) \rightarrow C(46) \rightarrow C(47) \rightarrow C(48) \rightarrow C(49) \rightarrow C(50)$
	Cg(12)	$C(51) \rightarrow C(52) \rightarrow C(53)a \rightarrow C(51)a \rightarrow C(52)a \rightarrow C(53)$

	Ligands	Excitation (nm)	Emission (nm)			
P^P	dppeda	381	454			
	dpppda	373	452			
	dppBz	355	460			
	bdppmapy	380	433			
N^N	Dpq	382	419			
	neo	388	415			
	batho	365	405			

Table S3 The excitation and emission data of the related ligands in the solid state at ambient temperature

Excited	Energy / eV	Oscillator	Major contribution (%)
state	(/ nm)	strength	
1	2.6580	0.1905	HOMO-1 \rightarrow LUMO+1 14.55
absorption	(466.46)		$HOMO \rightarrow LUMO \qquad 79.30$
1	4.9127	0.4040	HOMO-33 \rightarrow LUMO+3 2.50
absorption	(252.37)		HOMO-28 \rightarrow LUMO+2 3.11
			HOMO-28 \rightarrow LUMO+5 24.93
			HOMO-26 \rightarrow LUMO+3 3.32
			$HOMO-25 \rightarrow LUMO+3 $ 4.69
			HOMO-4 \rightarrow LUMO+17 2.09
			HOMO-3 \rightarrow LUMO+17 4.16
			$HOMO-2 \rightarrow LUMO+17 10.94$
1	2.6626	0.0921	$LUMO \rightarrow HOMO-7$ 25.22
emission	(465.64)		LUMO \rightarrow HOMO-6 2.87
			$LUMO+1 \rightarrow HOMO-1 \qquad 63.01$
2	2.8112	0.2192	HOMO-1 \rightarrow LUMO+1 48.56
absorption	(441.03)		HOMO \rightarrow LUMO 49.40
2	4.7709	0.3485	HOMO-28 \rightarrow LUMO 3.35
absorption	(259.88)		HOMO-27 \rightarrow LUMO+1 3.28
			$HOMO-25 \rightarrow LUMO \qquad 3.19$
			HOMO-24 \rightarrow LUMO+1 3.43
			HOMO-8 \rightarrow LUMO+3 2.67
			HOMO-7 \rightarrow LUMO+2 2.56
			HOMO-6 \rightarrow LUMO+5 9.79
			HOMO-5 \rightarrow LUMO+4 28.06
			HOMO-3 \rightarrow LUMO+4 5.14
			$HOMO-2 \rightarrow LUMO+5 4.32$
2	2.8167	0.1073	LUMO+1 \rightarrow HOMO-1 97.96
emission	(440.17)		
3	2.7287	0.3621	HOMO-4 \rightarrow LUMO 3.35
absorption	(454.38)		HOMO-3 \rightarrow LUMO+1 4.39
			HOMO-1 \rightarrow LUMO+1 43.28
			HOMO \rightarrow LUMO 46.32
3	3.9350	0.6520	$HOMO-10 \rightarrow LUMO+2 32.99$
absorption	(315.08)		HOMO-9 \rightarrow LUMO+3 34.00
			HOMO-7 \rightarrow LUMO+1 3.83
			$HOMO-6 \rightarrow LUMO$ 3.79
			HOMO-1 \rightarrow LUMO+6 5.57
			HOMO \rightarrow LUMO+7 4.95
3	4.7517	0.3419	HOMO-37 \rightarrow LUMO 4.18
absorption	(260.93)		$HOMO-36 \rightarrow LUMO+1 4.63$
			HOMO-35 \rightarrow LUMO+1 5.18

Table S4 Energy, oscillator strength and major contribution of the calculatedtransitions for complexes 1-4.

			HOMO-34 \rightarrow LUMO 5.21
			HOMO-25 \rightarrow LUMO+3 3.71
			HOMO-24 \rightarrow LUMO+2 3.25
			HOMO-8 \rightarrow LUMO+5 4.16
			HOMO-8 \rightarrow LUMO+7 2.10
			HOMO-5 \rightarrow LUMO+4 12.04
			HOMO-4 \rightarrow LUMO+12 2.57
			HOMO-3 \rightarrow LUMO+4 5.14
3	2.7360	0.1982	$LUMO+1 \rightarrow HOMO-4 \qquad 7.53$
emission	(453.15)		LUMO+1 \rightarrow HOMO-1 88.42
4	2.7635	0.2133	HOMO-4 \rightarrow LUMO+1 14.70
absorption	(448.64)		HOMO-3 \rightarrow LUMO+0 14.86
			HOMO-2 \rightarrow LUMO+0 31.88
			HOMO-1 \rightarrow LUMO+1 34.21
4	3.7991	0.4596	$HOMO-8 \rightarrow LUMO+2 44.51$
4 absorption	3.7991 (326.35)	0.4596	$\begin{array}{ccc} \text{HOMO-8} \rightarrow \text{LUMO+2} & \textbf{44.51} \\ \text{HOMO-7} \rightarrow \text{LUMO+3} & \textbf{44.19} \end{array}$
4 absorption 4	3.7991 (326.35) 5.0280	0.4596 0.2154	HOMO-8 \rightarrow LUMO+244.51HOMO-7 \rightarrow LUMO+344.19HOMO-38 \rightarrow LUMO+22.37
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 \rightarrow LUMO+244.51HOMO-7 \rightarrow LUMO+344.19HOMO-38 \rightarrow LUMO+22.37HOMO-37 \rightarrow LUMO+34.41
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596 0.2154	HOMO-8 \rightarrow LUMO+244.51HOMO-7 \rightarrow LUMO+344.19HOMO-38 \rightarrow LUMO+22.37HOMO-37 \rightarrow LUMO+34.41HOMO-10 \rightarrow LUMO+79.41
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 \rightarrow LUMO+244.51HOMO-7 \rightarrow LUMO+344.19HOMO-38 \rightarrow LUMO+22.37HOMO-37 \rightarrow LUMO+34.41HOMO-10 \rightarrow LUMO+79.41HOMO-9 \rightarrow LUMO+87.42
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+2 44.51 HOMO-7 → LUMO+3 44.19 HOMO-38 → LUMO+2 2.37 HOMO-37 → LUMO+3 4.41 HOMO-10 → LUMO+7 9.41 HOMO-9 → LUMO+8 7.42 HOMO-8 → LUMO+7 20.15
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+2 44.51 HOMO-7 → LUMO+3 44.19 HOMO-38 → LUMO+2 2.37 HOMO-37 → LUMO+3 4.41 HOMO-10 → LUMO+7 9.41 HOMO-9 → LUMO+8 7.42 HOMO-8 → LUMO+7 20.15 HOMO-7 → LUMO+6 2.41
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+244.51HOMO-7 → LUMO+344.19HOMO-38 → LUMO+22.37HOMO-37 → LUMO+34.41HOMO-10 → LUMO+79.41HOMO-9 → LUMO+87.42HOMO-8 → LUMO+720.15HOMO-7 → LUMO+62.41HOMO-7 → LUMO+817.21
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+2 44.51 HOMO-7 → LUMO+3 44.19 HOMO-38 → LUMO+2 2.37 HOMO-37 → LUMO+3 4.41 HOMO-10 → LUMO+7 9.41 HOMO-9 → LUMO+8 7.42 HOMO-7 → LUMO+6 2.41 HOMO-7 → LUMO+6 2.41 HOMO-7 → LUMO+8 17.21 HOMO-4 → LUMO+11 4.41
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+244.51HOMO-7 → LUMO+344.19HOMO-38 → LUMO+22.37HOMO-37 → LUMO+34.41HOMO-10 → LUMO+79.41HOMO-9 → LUMO+87.42HOMO-8 → LUMO+720.15HOMO-7 → LUMO+62.41HOMO-7 → LUMO+817.21HOMO-4 → LUMO+114.41HOMO-4 → LUMO+212.04
4 absorption 4 absorption	3.7991 (326.35) 5.0280 (246.59)	0.4596	HOMO-8 → LUMO+244.51HOMO-7 → LUMO+344.19HOMO-38 → LUMO+22.37HOMO-37 → LUMO+34.41HOMO-10 → LUMO+79.41HOMO-9 → LUMO+87.42HOMO-8 → LUMO+720.15HOMO-7 → LUMO+62.41HOMO-7 → LUMO+817.21HOMO-4 → LUMO+114.41HOMO-3 → LUMO+212.04HOMO-3 → LUMO+182.67
4 absorption 4 absorption 4	3.7991 (326.35) 5.0280 (246.59) 2.7881	0.4596 0.2154 0.2548	HOMO-8 → LUMO+2 44.51 HOMO-7 → LUMO+3 44.19 HOMO-38 → LUMO+2 2.37 HOMO-37 → LUMO+3 4.41 HOMO-10 → LUMO+3 4.41 HOMO-9 → LUMO+7 9.41 HOMO-8 → LUMO+7 20.15 HOMO-7 → LUMO+6 2.41 HOMO-7 → LUMO+8 17.21 HOMO-4 → LUMO+11 4.41 HOMO-3 → LUMO+21 2.04 HOMO-3 → LUMO+18 2.67 LUMO+1 → HOMO-1 87.09

Materials and complex	kes T	erahertz	spectra	peak (TH	Iz)									
Cu(CH ₃ CN)ClO ₄	0.30	1.30	1.47	1.82	2.05	2.17	2.28							
Dpq	0.30	0.39	1.00	1.25	1.32	1.52	1.71	1.78	2.02	2.14	2.34	2.48	2.55	2.64
neo	0.23	0.35	0.53	0.76	0.98	1.41	1.52	1.76	1.98	2.22	2.40	2.69		
batho	0.23	0.41	0.53	0.64	0.76	0.93	1.29	1.47	2.34	2.57	2.69			
dppeda	0.29	0.41	0.52	0.64	0.76	0.88	1.00	1.23	1.40	1.58	1.82	1.99	2.11	2.22
dpppda	0.26	0.35	0.44	0.61	0.70	0.82	1.07	1.16	1.70	2.08	2.28	2.48	2.54	2.64
1	0.29	1.81	2.05	2.22	2.46	2.58	2.75							
2	0.24	1.46	1.71	1.87	2.06	2.17	2.28	2.46	2.70					
3	0.29	1.70	1.82	1.93	2.17	2.22	2.46	2.58	2.69					
4	0.24	1.05	1.70	1.82	1.93	2.05	2.17	2.28	2.46	2.70				

Table S5THz data for starting materials and complexes 1-4