Pages S1-S77

Supporting Information

Probing electronic structure of $[Ru(L^1)_2]^Z$ (z = 0, 1+ and 2+) (H₂L¹: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels

Anannya Saha, Amit Rajput, Puneet Gupta and Rabindranath Mukherjee*

Figures

Fig. S1 Positive-ion ESI-MS spectra of $[Ru(L^1)_2]$ (1).

Fig. S2 ¹H NMR spectrum (400 MHz, CDCl₃) of 1 at 298 K.

Fig. S3 Positive-ion ESI-MS spectra of $[1^{OX1}](PF_6) \cdot CH_2Cl_2$.

Fig. S4 Positive-ion ESI-MS spectra of $[Ru(L^1)_2](BF_4)_2 \cdot H_2O$.

Fig. S5 Cyclic voltammogram (100 mV/s) of a 0.5 mM solution of $[1^{OX1}](PF_6) \cdot CH_2Cl_2$ in CH₂Cl₂ (0.1 M in TBAP; 298 K) at a platinum working electrode.

Fig. S6 Cyclic voltammogram (100 mV/s) of a 0.5 mM solution of $3 / [1^{0X2}](BF_4)_2 \cdot H_2O$ in CH₂Cl₂(0.1 M in TBAP; 298 K) at a platinum working electrode.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of $3 / [1^{OX2}](BF_4)_2 \cdot H_2O$ at 298 K.

Fig. S8 XPS of Ru 3d and C 1s core level for 1–3.

Fig. S9 XPS of N 1s core level for 1 and 3.

Fig. S10 X-band EPR spectra for solid $[1^{OX1}](PF_6) \cdot CH_2Cl_2$ at 150 K and at 298 K

Fig. S11 X-band EPR spectrum of $[1^{OX1}]^{1+}$ in CHCl₃-C₆H₅CH₃ (1:1, v/v) in the temperature range 120–318 K.

Fig. S12 Modulation amplitude dependent X-band EPR Spectrum of $[1^{OX1}]^{1+}$ in CHCl₃-C₆H₅CH₃ (1:1, v/v) at 120 K.

Fig. S13 Mulliken spin population and qualitative MO diagram of the magnetic-orbitals of **1**, using BS-DFT calculation.

Fig. S14 Computational model system used for DFT calculations (QRO analysis).

Fig. S15 Qualitative frontier MO diagram for 1 (S = 1) of QROs analysis.

Fig. S16 Qualitative QRO diagram of $[1^{OX1}]^{1+}$ (S = 1/2, B3LYP-QRO).

Fig. S17 Qualitative frontier MO diagram for $[1^{OX1}]^{1+}$ (S = 3/2, B3LYP-QRO).

Fig. S18 Qualitative frontier MO diagram for $[1^{OX2}]^{2+}$ (S = 1, B3LYP-QRO).

Fig. S19 Electronic spectra of 1, $[1^{OX1}]^{1+}$, and $[1^{OX2}]^{2+}$ in CH₂Cl₂.

Fig. S20 TD-DFT-Calculated electronic spectra of 1, $[1^{OX1}]^{+1}$, and $[1^{OX2}]^{+2}$, using B3LYP. Fig. S21 Representative molecular-orbitals involved in TD-DFT transitions of 1, using CAM-B3LYP.

Fig. S22 Representative molecular-orbitals involved in TD-DFT transitions of 1, using B3LYP.

Fig. S23 Representative MOs involved in TD-DFT transitions of $[1^{0X1}]^{1+}$, using CAM-B3LYP.

Fig. S24 Representative MOs involved in TD-DFT transitions of $[1^{OX1}]^{1+}$, using B3LYP. Fig. S25 Representative MOs involved in TD-DFT transitions of $[1^{OX2}]^{2+}$, using CAM-B3LYP.

Fig. S26 Representative MOs involved in TD-DFT transitions of $[1^{OX2}]^{2+}$, using B3LYP.

Fig. S27 TD-DFT calculated spectra of free ligand in its $(L^{ISQ})^{-}$ redox level using CAM-B3LYP level of theory.

Fig. S28 TD-DFT calculated spectra of free ligand in its $(L^{IBQ})^0$ redox level using CAM-B3LYP level of theory.

Tables

Table S1 Crystal data and structure refinement parameters for 1 at 100 K and at 298 K**Table S2** Crystal data and structure refinement parameters for 2 and 3 at 100 K and 298 K**Table S3** Bond angles for 1, 2 and 3

Table S4 Comparison of experimental bond lengths (X-ray) with calculated bond lengths (MOS values) (Å) of **1**, **2** and **3** at 298 K

Table S5 DFT-optimized cartesian coordinates of 1, using CAM-B3LYP-level of theory **Table S6** DFT-optimized cartesian coordinates of $[1^{OX1}]^{1+}$, using CAM-B3LYP-level of theory

Table S7 DFT-optimized cartesian coordinates of $[1^{OX2}]^{2+}$, using CAM-B3LYP-level of theory

Table S8 X-ray determined and calculated (BS-DFT and DFT-QRO) bond lengths (Å) of 1

Table S9 X-ray determined and calculated (BS-DFT and DFT-QRO) bond lengths (Å) of $[1^{OX1}]^{1+}/2$

Table S10 X-ray determined and calculated (BS-DFT and DFT-QRO) bond lengths (Å) of $[1^{0X2}]^{2+}/3$

Table S11 Mulliken spin population for **1** and $[1^{OX1}]^{1+}$, using CAM-B3LYP and B3LYP **Table S12** Computed energy values of CSS and BS solution for **1**, using CAM-B3LYP and B3LYP

Table S13 Computed energy values for all three possible spin states for $[1^{OX1}]^{1+}$, using CAM-B3LYP

 Table S14 TD-DFT-calculated electronic transitions for 1, using CAM-B3LYP

Table S15 TD-DFT-calculated electronic transitions for 1, using B3LYP

 Table S16 TD-DFT-calculated electronic transitions for [1^{OX1}]¹⁺, using CAM-B3LYP

Table S17 TD-DFT-calculated electronic transitions for $[1^{OX1}]^{1+}$, using B3LYP

Table S18 TD-DFT-calculated electronic transitions for $[1^{OX2}]^{2+}$, using CAM-B3LYP

 Table S19 TD-DFT-calculated electronic transitions for [1^{OX2}]²⁺, using B3LYP

Fig. S1 Positive-ion ESI-MS spectra of $\{[Ru(L^1)_2] - e^-\}^{1+}$.

Fig. S2 ¹H NMR spectrum (400 MHz, CDCl₃) of $[Ru(L^1)_2]$ (1) at 298 K. Peak denoted by * is due to residual CHCl₃.

Fig. S3 Positive-ion ESI-MS spectra of $[Ru(L^1)_2]^{1+}$.

Fig. S4 Positive-ion ESI-MS spectra of ${[Ru(L^1)_2]^{2+} + e^-}^{1+}$.

Fig. S5 Cyclic voltammogram (100 mV/s) of a 0.5 mM solution of $[1^{OX1}](PF_6) \cdot CH_2Cl_2$ in CH₂Cl₂ (0.1 M in TBAP) at a platinum working electrode. Indicated peak potentials are in V *vs.* SCE.

Fig. S6 Cyclic voltammogram (100 mV/s) of a 0.5 mM solution of $3 / [1^{0X2}](BF_4)_2 \cdot H_2O$ in CH₂Cl₂ (0.1 M in TBAP) at a platinum working electrode. Indicated peak potentials are in V *vs.* SCE.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of $3 / [1^{OX2}](BF_4)_2 \cdot H_2O$ Peak denoted by * is due to residual CHCl₃.

(*a*)

Fig. S8 XPS of Ru 3d and C 1s core levels for (a) 1, (b) 2 and (c) 3, where yellow and purple lines represent C 1s and Ru 3d core level, respectively.

(a)

S11

Fig. S9 XPS of N 1s core level (*a*) for **1**, where yellow and green lines represent $(L^{ISQ})^{-}$ and $(L^{AP})^{2-}$ redox levels, respectively; (*b*) for **3**, where bluish pink and yellow lines represent $(L^{IBQ})^{0}$ and $(L^{ISQ})^{-}$ redox levels, respectively.

Fig. S10 X-band EPR spectrum (v = 9.458 GHz, power = 0.188 mW, receiver gain = 1 x 10³, modulation frequency = 100 KHz, modulation amplitude = 1.00 G) recorded for solid [1^{OX1}](PF₆)•CH₂Cl₂ at 150 K and at 298 K.

Fig. S11 X-band EPR spectra (v = 9.458 GHz, power = 0.188 mW, receiver gain = 1 x 10³, modulation frequency = 100 KHz, modulation amplitude = 1.00 G) recorded for 1 mM solution of $[1^{OX1}]^{1+}$ in CHCl₃-C₆H₅CH₃ (1:1, v/v) at variable temperatures (120 – 318 K).

Fig. S12 X-band EPR spectra (v = 9.458 GHz, power = 0.188 mW, receiver gain = 1 x 10³, modulation frequency = 100 KHz, modulation amplitude = 0.15–1.00 G) recorded for 1 mM solution of [1^{OX1}]¹⁺ in CHCl₃-C₆H₅CH₃ (1:1, v/v) at 120 K.

Computational details

Spin population analysis

All structural optimizations were employed using the Gaussian 09 program package¹ with a hybrid exchange-correlation functional Coulomb-Attenuating Method-B3LYP (CAM-B3LYP) as well as B3LYP (20% Hartree-Fock (HF) exchange admixture) functional for comparison.²⁻⁴ For calculations, the quasi-relativistic effective core LANL2DZ pseudopotential^{5a} and the corresponding optimized set of basis function was used for Ru. Valence double-zeta polarized basis-set 6-311+G(d)^{5b} was employed for N, O, and S and $6-31G(d,p)^{5c}$ basis-set was used for C and H. For spin-polarized symmetry-broken solution, the broken-symmetry formalism of Noodleman was used.^{6,7a} The symmetry-broken,⁷ singlet-diradical wave function of 1 and $[1^{0x^2}]^{2+}$ were optimized in Gaussian 09.¹ Initially, the stability analysis of the DFT wave functions were performed using the "stable=opt" keyword. The program will automatically find the lowest energy wave function if there is any symmetry-broken DFT solution, The spin-polarized broken-symmetry (BS) solutions of 1 and $[1^{OX2}]^{2+}$ were performed by consequent optimization of the DFT wave function with high-spin triplet states ($S_T = 1$), followed by geometry optimizations on the BS $M_S =$ 0 surface with "Guess=Mix" keyword.^{7b} The symmetry broken solution is measured from the non-zero expectation value of the spin operator ($\langle S^2 \rangle$). The energy differences between different states are represented as sum of electronic and zero-point energy with its zero

Fig. S13 (*a*) Mulliken spin population and (*b*) qualitative MO diagram of the magnetic orbitals of **1** using CAM-B3LYP as functional.

231 α / β

97% L

S = **0.99**

point correction (ΔE). For the monocation $[1^{OX1}]^{1+}$ the BS calculations were carried out following the same procedure mentioned above. We performed the vibrational frequency calculations on 1, $[1^{OX1}]^{1+}$ and $[1^{OX2}]^{2+}$ at the same level to characterize their nature at energy minima. Mulliken atomic spin populations were also calculated at the optimized geometry. The wave functions of the optimized geometries for 1, 2 and 3 (100 K data), excluding the counteranion(s) and solvent(s) of crystallization, were used for TD-DFT calculations employing both CAM-B3LYP and also B3LYP functional and the conductorlike polarizable continuum model CPCM (CH₂Cl₂ as solvent).⁸ TD-DFT-derived electronic spectra were plotted using GaussSum.⁹ Corresponding orbitals and spin population plots were made using the Chemcraft,¹⁰ visualization program.

QRO analysis. All calculations were performed using the ORCA quantum chemical program package¹¹ to understand the electronic structure of $[Ru(L^1)_2]^{n+}$ (n = 0–2). These calculations were performed at Azure computational facility at IIT Roorkee. To construct computational models for geometry optimization (Fig. S14, ESI⁺), large *tert*-butyl groups located at a distance away from the core have been truncated from the crystal structures (100 K) of **1**, $[1^{OX1}]^{1+}$ (crystallized as $[1^{OX1}](PF_6) \cdot CH_2Cl_2 \cdot H_2O$ (**2**)), and $[1^{OX2}]^{2+}$ (crystallized as $[1^{OX2}](BF_4)_2 \cdot 1.7H_2O$ (**3**)). In order to perform a systematic electronic-structure comparison of one-electron and two-electron oxidized species with **1**, the charged complexes, $[1^{OX1}]^{1+}$ and $[1^{OX2}]^{2+}$, were considered without inclusion of the counteranion and solvent(s) of crystallization.

Fig. S14 (*a*) Computational model system used for DFT calculations. Hydrogen atoms are not shown for clarity; (*b*) atoms for which def2-TZVP (-f) basis set is employed. For rest of the atoms def2-SVP basis set is used.

Geometries were optimized with the hybrid-GGA (generalized gradient approximation) density functional B3LYP^{2e,f,g} in conjunction with def2-TZVP(-f) basis sets,¹² without f polarization functions for the first coordination sphere (Ru, O, C, N, and S) and def2-SVP basis sets¹³ for the rest of the atoms (Fig. S14, ESI[†]). To accelerate the overall calculations, the RIJCOSX¹⁴ (resolution-of-the-identity for Coulomb (RIJ) with a chain of sphere (COS) algorithm for the Hartree-Fock (HF) exchange (X) part) approximation was applied for the expensive integral calculations. Noncovalent interactions were accounted for by using atom-pairwise dispersion corrections with Becke-Johnson (D3BJ) damping.¹⁵ Subsequent numerical frequency calculations were undertaken for the optimized geometries to confirm that they correspond to stationary points featuring no imaginary frequencies. The zeropoint vibrational energies, thermal corrections, and entropy terms were obtained from the frequency calculations. Quasi restricted orbital (QRO)¹⁶ analysis was performed using ORCA. QRO diagrams are visualized using the Chimera software.¹⁷

References for computational details

(1) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.; Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg,

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,

O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark,

J. J. Heyd, E. Brothers, K. N.. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J.

Millam, J. E. Klene, J. B. Knox, V. Cross, C. Bakken, J. Adamo, M. Jaramillo, R.

Gomperts, R. E. Stratmann, O Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski, D. J.; Fox, Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, CT, 2010.

(2) (a) I. V. Rostov, R. D. Amos, R. Kobayashi, G. Scalmani and M. J. Frisch, J. Phys.

Chem. B., 2010, **114**, 5547-5555; (*b*) D. Jacquemin, C. Michaux, E. A. Perpete, F. Maurel and A. Perrier, *Chem. Phys. Lett.*, 2010, **488**, 193-197; (*c*) D. Jacquemin, E. A. Perpete, G.

E. Scuseria, I. Ciofini and C. Adamo, J. Chem. Theory Comput. 2008, 4, 123-135; (d) M.

M. Mikolajczyk, R. Zalesny, Z. Czyznikowska, P. Toman, J. Leszczynski and W. Bartkowiak, J. Mol. Model., 2011, 17, 2143-2149; (e) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–3100; (f) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652;
(g) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

(3) C. Remenyl and M. Kaupp, J. Am. Chem. Soc., 2005, 127, 11399–11413.

(4) (a) Y. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51–57; (b) L.
Chiang, A. Kochem, O. Jarjayes, T. J. Dunn, H. Vezin, M. Sakaguchi, T. Ogura, M. Orio,
Y. Shimazaki, F. Thomas and T. Storr, *Chem. Eur. J.*, 2012, **18**, 14117–14127; (c) Y.
Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao, *J. Chem. Phys.*, 2004, **120**, 8425–8433.

(5) (*a*) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 270–283; (*b*) G. A. Peterson,
A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, 89, 2193–2218; (*c*) G. A. Peterson and M. A. Al-Laham, *J. Chem. Phys.*, 1991, 94, 6081–6090.

(6) (a) P. A. Ginsberg, J. Am. Chem. Soc., 1980, 102, 111–117; (b) L. Noodleman and J.
G. Jr. Norman, J. Chem. Phys., 1979, 70, 4903–4906; (c) L. Noodleman, J. Chem. Phys., 1981, 74, 5737–5743; (d) L. Noodleman and E. R. Davidson, Chem. Phys., 1986, 109, 131–143.

(7) (*a*) V. Bachler, G. Olbrich, F. Neese and K. Wieghardt, *Inorg. Chem.*, 2002, 41, 4179–4193; (*b*) Y. G. Park, M. F. Qayyum, J. Woertink, K. O. Hodgson, B. Hedman, A. A. N. Sarjeant, E. I. Solomon and K. D. Karlin, *J. Am. Chem. Soc.*, 2012, 134, 8513–8524.
(8) (*a*) V. Barone and M. Cossi, *J. Phys. Chem. A*, 1998, 102, 1995–2001; (*b*) M. Cossi and V. Barone, *J. Chem. Phys.*, 2001, 115, 4708–4717; (c) M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.*, 2003, 24, 669–681.

(9) N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem., 2008, 29, 839–845.

- (10) Chemcraft Visualization Program. http://www.chemcraftprog.com/.
- (11) F. Neese, The ORCA program system. WIREs Comput. Mol. Sci., 2012, 2, 73-78.
- (12) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
- (13) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.
- (14) F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98-109.
- (15) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- (16) F. Neese, J. Am. Chem. Soc., 2006, 128, 10213–10222.
- (17) E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, *J. Comput. Chem.*, 2004, 25, 1605–1612.

[**Ru**(L¹)₂] (S = 1, triplet). In the triplet case (Fig. S15, ESI[†]) the two unpaired electrons are located in the Ru–L¹ centered antibonding (π^*) orbitals, which are vacant in the case of closed-shell system. This implies that the triplet-state would be destabilized relative to the closed-shell species. In fact, the triplet state is found to be higher in energy ($\Delta G = 5.2$ kcal/mol) than the closed-shell structure.

Fig. S15 Qualitative frontier MO diagram of $[Ru(L^1)_2]$ (S = 1) obtained from its unrestricted Kohn-Sham geometry-optimized structure.

Fig. S16 Qualitative QRO diagram of $[Ru(L^1)_2]^{1+}$ (*S* = 1/2, B3LYP).

 $[\mathbf{Ru}(\mathbf{L}^1)_2]^{1+}$ (S = 3/2, quartet). The results for S = 3/2 are presented in Fig. S17, ESI[†]. Out of three unpaired electrons, one occupies in an antibonding (\mathbf{Ru} - \mathbf{d}_{xz} - \mathbf{L}^1 ligands) orbital and the other two are located in a ligand-based nonbonding and $\mathbf{Ru}(\mathbf{d}_{yz})$ orbital, respectively. As the electrons are in the antibonding and nonbonding orbitals the geometry with S = 3/2 would not be preferred over S = 1/2 state, in which there is no electron in the antibonding orbital. DFT-based energy calculations show that indeed the doublet is more stable ($\Delta G = 14$ kcal/mol) than the quartet state.

Fig. S17 Qualitative frontier MO diagram for $[Ru(L^1)_2]^{1+}$ (S = 3/2).

Fig. S18 Qualitative frontier MO diagram for $[Ru(L^1)_2]^{2+}$ (*S* = 1).

 $[\mathbf{Ru}(\mathbf{L}^1)_2]^{2+}$ (*S* = 1, triplet). We have also studied the electronic structure of $[\mathbf{Ru}(\mathbf{L}^1)_2]^{2+}$ with *S* = 1 (Fig. S18, ESI[†]). Clearly, in the triplet state one unpaired electron is in the nonbonding orbital and the other in the Ru d_{yz} orbital, whereas in the CSS both electrons are in the Ru d_{yz} orbital. The triplet is less stable ($\Delta G = 9$ kcal/mol) than the closed-shell species.

Fig. S19 Electronic spectra of 1, $[1^{OX1}]^{1+}$, and $[1^{OX2}]^{2+}$ in CH₂Cl₂ at 298 K.

Fig. S20 TD-DFT-Calculated electronic spectra of (*a*) 1, (*b*) $[1^{OX1}]^{1+}$ and (*c*) $[1^{OX2}]^{2+}$ using B3LYP level of theory.

LUMO + 3 (α)

HOMO (α)

ΗΟΜΟ - 1 (α)

HOMO – 2 (α)

HOMO – 3 (α)

LUMO + 1 (β)

LUMO (ß)

HOMO (β)

HOMO - 1 (β)

HOMO – 2 (β)

HOMO - 3 (β)

Fig. S21 Representative molecular-orbitals involved in TD-DFT transitions of **1**, using CAM-B3LYP level of theory.

LUMO + 3 (α)

LUMO + 1 (α)

HOMO (a)

ΗΟΜΟ - 3 (α)

HOMO - 2 (α)

HOMO - 3 (α)

ΗΟΜΟ - 4 (α)

LUMO + 3 (β)

LUMO + 2 (β)

LUMO + 1 (*β*)

LUMO (ß)

HOMO – 1 (β)

HOMO – 2 (β)

HOMO – 3 (β)

Fig. S22 Representative molecular-orbitals involved in TD-DFT transitions of **1**, using B3LYP level of theory.

LUMO + 2 (α)

LUMO + 1 (α)

LUMO (a)

HOMO (*α*)

HOMO - 1 (α)

HOMO – 2 (α)

HOMO – 3 (α)

HOMO – 4 (α)

HOMO – 9 (α)

HOMO – 10 (α)

LUMO + 2 (β)

LUMO + 1 (β)

LUMO (α)

ΗΟΜΟ (α)

HOMO - 1 (*α*)

HOMO - 2 (β)

HOMO - 3 (β)

HOMO - 5 (β)

HOMO - 8 (β)

HOMO - 10 (β)

Fig. S23 Representative molecular-orbitals involved in TD-DFT transitions of $[1^{OX1}]^{1+}$, using CAM-B3LYP level of theory.

HOMO - 2 (α)

HOMO - 4 (α)

HOMO - 5 (*α*)

HOMO - 7 (α)

HOMO - 9 (α)

HOMO (β)

HOMO -1 (β)

HOMO -2 (β)

Fig. S24 Representative molecular-orbitals involved in TD-DFT transitions of $[1^{OX1}]^{1+}$, using B3LYP level of theory.

HOMO (α/β)

HOMO -1 (α/β)

HOMO -3 (α/β)

HOMO – 4 (α/β)

HOMO -5 (α/β)

HOMO – 8 (α/β)

HOMO -10 (α/β)

Fig. S26 Representative molecular-orbitals involved in TD-DFT transitions of $[1^{OX2}]^{2+}$, using B3LYP level of theory.

Fig. S27 TD-DFT calculated spectra of free ligand in its $(L^{ISQ})^{-}$ redox level using CAM-B3LYP level of theory.

Fig. S28 TD-DFT calculated spectra of free ligand in its $(L^{IBQ})^0$ redox level using CAM-B3LYP level of theory.

	100 K	298 K
formula	$C_{54}H_{62}N_2O_2RuS_2$	$C_{54}H_{62}N_2O_2RuS_2$
fw	936.30	936.30
<i>T</i> /K	100(2)	298(2)
cryst color, habit	purple, block	purple, block
cryst syst	triclinic	triclinic
space group	<i>P</i> 1 (No. 2)	<i>P</i> 1 (No. 2)
a/Å	10.489(2);	10.568(5)
b/Å	11.622(2)	11.825(5)
c/Å	21.239(4)	21.385(5)
α/deg	82.011(3)	81.660(5)
β/deg	84.971(4)	85.142(5)
γ/deg	67.666 (4)	67.475(5)
$V/Å^3$	2369.9(8)	2441.2(17)
Ζ	2	2
$D_c/\mathrm{g~cm^{-3}}$	1.312	1.274
<i>F</i> (000)	984	984
μ/mm^{-1}	0.461	0.448
reflns collected	13298	36768
unique rflns/ R_{int}	9077/0.0359	36740/0.0716
reflns used $[I > 2\sigma(I)]$	6907	7855
GOF on F^2	0.984	1.026
$R_{1},^{a} w R_{2}^{b} [I > 2\sigma(I)]$	$R_1 = 0.058$	$R_1 = 0.0731$
	$wR_2 = 0.144$	$wR_2 = 0.1579$
R_1 , ^a wR_2 ^b (all data)	$R_1 = 0.081$	$R_1 = 0.1289$
	$wR_2 = 0.179$	$wR_2 = 0.1825$

Table S1 Crystal data and structure refinement parameters for 1 at 100 K and at 298 K

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = \{ \Sigma [w (|F_{o}|^{2} - |F_{c}|^{2})^{2}] / \Sigma [w (|F_{o}|^{2})^{2}] \}^{1/2}$

formula	2		3	
	$C_{55}H_{63}Cl_2F_6N_2O_3PRuS_2$		$C_{54}H_{62}F_8N_2O_{3.7}B_2RuS_2$	
Fw	1183.19	1183.19	1140.95	1140.95
T/K	100(2)	298(2)	100(2)	298(2)
Cryst color, habit	bluish pur	ple, block	dark g	reen, block
Cryst syst	Monc	oclinic	Мо	noclinic
space group	$P2_{1}/c$ (No. 14)	$P2_{1}/c$	c (No. 14)
a/Å	15.4686(3)	15.6743(2)	15.1356(3)	15.3134(5)
b/Å	21.8136(3)	21.9974(2)	21.8710(3)	22.0442 (6)
c/Å	17.1423(3)	17.5755(2)	16.8585(3)	17.0690(5)
α/\deg	90.000	90.000	90.000	90.000
β/deg	109.838(2)	110.007(2)	109.946(2)	110.040(3)
י∕/deg	90.000	90.000	90.000	90.000
<i>V</i> /Å ³	5440.99(17)	5694.21(13)	5245.92(17)	5413.1(3)
Ζ	4	4	4	4
$D_c/\mathrm{g~cm^{-3}}$	1.442	1.381	1.440	1.381
F(000)	2440	2451.6	2350.4	2328.0
μ/mm^{-1}	4.78	4.57	3.80	3.67
reflns collected	37843	46101	49850	37983
unique rflns/ <i>R</i> _{int}	37248/0.0315	45440/0.0287	49031/0.0655	37375
reflues used $[I > 2\sigma(I)]$	8884	8947	8587	8606
GOF on F^2	1.047	1.0510	1.0300	1.0500
R_{1} , ^{<i>a</i>} wR_{2} ^{<i>b</i>}	$R_1 = 0.0658$	$R_1 = 0.0636$	$R_1 = 0.0831$	$R_1 = 0.0732$
$[I > 2\sigma(I)]$	$wR_2 = 0.1890$	$wR_2 = 0.2039$	$wR_2 = 0.2272$	$wR_2 = 0.2107$
R_1 , ^{<i>a</i>} wR_2^b	$R_1 = 0.0686$	$R_1 = 0.0677$	$R_1 = 0.0861$	$R_1 = 0.0770$
(all data)	$wR_2 = 0.1934$	$wR_2 = 0.2097$	$wR_2 = 0.2307$	$wR_2 = 0.2160$
$a \mathbf{p} = \nabla \mathbf{F} = \mathbf{F} / \nabla \mathbf{F} $	$b_{10}R_{2} - i\Sigma[w]$	$ E ^2 E ^2 \sqrt{21/5}$	$F[w(F ^2)^{2}] 1/2$	•

Table S2 Crystal data and structure refinement parameters for **2** and **3** at 100 K and at 298 Κ

 ${}^{t}R_{1} = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}|. \ {}^{o}WR_{2} = \{\Sigma [W(|F_{0}|^{2} - |F_{c}|^{2})^{2}]/\Sigma [W(|F_{0}|^{2})^{2}]\}$

CCDC-1899166 (1; 298 K dataset), 1899167 (1; 100 K dataset), 1899168 (2; 100 K dataset), 1936878 (2; 298 K dataset), 1899169 (3; 100 K dataset), and 1936879 (3; 298K dataset).

	1	2	3
N1–Ru–N2	168.10(13) [168.45(13)]	166.82(16) [167.39(14)]	166.93(19) [167.35(16)]
N1–Ru–O2	90.37(12) [90.55(13)]	90.01(14) [91.15(13)]	89.32(17) [89.87(15)]
N1-Ru-O1	81.15(12) [80.98(12)]	80.04(15) [79.87(13)]	79.91(16) [79.99(14)]
N2-Ru-O1	90.00(12) [90.73(13)]	90.79(14) [90.65(14)]	92.06(17) [92.33 (16)]
N2–Ru–O2	81.24(12) [81.07(13)]	80.06(14) [80.02(14)]	79.75(18) [79.57(16)]
O1–Ru–O2	87.32(11) [87.92(12)]	87.43(13) [87.21(13)]	85.82(16) [86.48(14)]
N1–Ru–S2	105.05(10) [104.94(11)]	105.29(11) [104.30(11)]	106.01(13) [105.96(12)]
N1–Ru–S1	83.83(9) [83.73(10)]	85.09(12) [84.58(10)]	85.17(14) [84.87(12)]
N2-Ru-S1	105.33(10) [104.94(10)]	104.53(11) [104.98(10)]	103.12(14) [103.10(13)]
N2–Ru–S2	83.85(10) [83.92(10)]	84.77(11) [84.91(11)]	84.92(14) [84.67(12)]
S1–Ru–S2	83.43(4) [83.49(4)]	85.20(4) [85.49(4)]	85.61(5) [85.49(4)]
O1–Ru–S1	164.63(8) [164.25(8)]	164.61(9) [164.36(9)]	164.82(11) [164.57(11)]
O1–Ru–S2	97.30(8) [96.81(9)]	94.85(10) [96.65(9)]	95.76(11) [95.76(10)]
O2–Ru–S1	96.05(8) [96.00(9)]	96.58(10) [94.85(9)]	96.86(12) [95.76(10)]
O2–Ru–S2	164.39(8) [164.32(8)]	164.69(9) [164.49(9)]	164.64(12) [164.57(10)]

 Table S3 Bond angles for 1, 2 and 3 at 100 K and at 298 K

^{*a*} The values in parentheses are at 298 K.

Bond	1	MOS-	2	MOS-	3	MOS-
distances		derived		derived		derived
(Å)		parameters		parameters		parameters
		of 1		of 2		of 3
C1O1	1.333(4)	1.337	1.302(6)	1.302	1.302(6)	1.302
C1–C2	1.411(5)	1.410	1.364(6)	1.349	1.364(6)	1.349
C2–C7	1.390(5)	1.392	1.424(6)	1.426	1.424(6)	1.426
C7–C8	1.413(5)	1.406	1.374(7)	1.377	1.374(7)	1.377
C8–C13	1.380(5)	1.384	1.432(6)	1.428	1.432(6)	1.428
C13–C14	1.389(5)	1.400	1.373(7)	1.371	1.373(7)	1.371
C1–C14	1.433(5)	1.421	1.411(6)	1.412	1.411(6)	1.412
C14–N1	1.394(5)	1.378	1.454(6)	1.443	1.454(6)	1.443
C28–O2	1.329(5)	1.322	1.302(6)	1.302	1.302(6)	1.302
C28–C29	1.410(6)	1.416	1.364(6)	1.349	1.364(6)	1.349
C29–C34	1.370(6)	1.386	1.424(6)	1.426	1.424(6)	1.426
C34–C35	1.433(5)	1.416	1.374(7)	1.377	1.374(7)	1.377
C40–C41	1.403(5)	1.405	1.432(6)	1.428	1.432(6)	1.428
C28–C41	1.434(5)	1.429	1.373(7)	1.371	1.373(7)	1.371
C35–C40	1.360(6)	1.379	1.411(6)	1.412	1.411(6)	1.412
C41–N2	1.387(5)	1.366	1.454(6)	1.443	1.454(6)	1.443

Table S4 Comparison of experimental bond lengths (X-ray) with calculated bond lengths (MOS values) (Å) of 1, 2 and 3 at 298 K

 Table S5 DFT-optimized cartesian coordinates of 1, using CAM-B3LYP

RuC54S2O2N2H62

Ru	-0.030859000	0.021899000	-0.065508000
S	-0.155944000	-0.130295000	2.331001000
S	2.363502000	0.123803000	0.181467000
0	-1.949489000	-0.636165000	-0.406506000
0	-0.069062000	0.734165000	-2.000430000
Ν	-0.645994000	1.923723000	0.252674000
Ν	0.339392000	-1.870712000	-0.644872000
С	-0.825627000	1.790821000	-2.085874000
С	-1.944408000	-1.689145000	-1.180758000
С	-0.703026000	-2.397058000	-1.362593000

С	-1.194489000	2.472462000	-0.870289000
С	-1.808795000	-0.779821000	2.841078000
С	-0.354806000	1.632287000	2.607712000
С	3.127099000	0.761673000	-1.375824000
С	2.623552000	-1.645308000	0.021721000
С	-0.561909000	2.498634000	1.509521000
С	1.548223000	-2.480773000	-0.360554000
С	-1.258611000	2.320082000	-3.342410000
С	-3.124839000	-2.183476000	-1.806940000
С	-0.642452000	-3.488938000	-2.248915000
С	-2.087104000	3.568658000	-0.918944000
С	-1.715925000	-2.253511000	3.119918000
С	-0.227596000	2.130081000	3.899313000
С	3.448073000	2.222240000	-1.230582000
С	3.863950000	-2.178166000	0.352806000
С	-0.578423000	3.880957000	1.768119000
С	1.767492000	-3.870076000	-0.337978000
С	-0.830549000	1.660120000	-4.661088000
С	-2.096376000	3.414927000	-3.310223000
С	-2.994806000	-3.285380000	-2.636406000
С	-4.477525000	-1.488571000	-1.590529000
С	-1.773057000	-3.942594000	-2.897197000
С	-2.552063000	4.042557000	-2.121986000
С	-2.002105000	-3.186656000	2.123195000
С	-1.318146000	-2.709256000	4.378246000
С	-0.298584000	3.496707000	4.138027000
С	4.670213000	2.625188000	-0.689311000
С	2.525127000	3.196315000	-1.612679000
С	4.072760000	-3.551043000	0.317242000
С	-0.455984000	4.364461000	3.060913000
С	3.010268000	-4.388612000	-0.011561000
С	-1.350938000	0.211781000	-4.722439000
С	-1.381862000	2.407871000	-5.882560000
С	0.704935000	1.655806000	-4.774781000
С	-4.415057000	-0.036236000	-2.098854000
С	-5.615233000	-2.196517000	-2.338666000
С	-4.836892000	-1.489692000	-0.093154000
С	-1.665683000	-5.116827000	-3.880741000
С	-3.547354000	5.202429000	-2.229526000
С	-1.893888000	-4.548937000	2.382116000
С	-1.209551000	-4.069330000	4.637755000
С	4.966934000	3.973154000	-0.534068000
С	2 821200000	4 546362000	-1 458087000
	2.821399000		1
С	-1.092370000	-6.348231000	-3.155963000
C C	-1.092370000 -3.023151000	-6.348231000 -5.510228000	-3.155963000 -4.476541000

С	-2.915998000	6.349130000	-3.040098000
С	-3.946202000	5.753879000	-0.855958000
С	-4.825441000	4.719756000	-2.939859000
С	-1.496528000	-4.993424000	3.637825000
С	4.040933000	4.938052000	-0.917952000
Н	-2.454626000	3.812605000	-4.250532000
Н	-2.435813000	3.992403000	0.011306000
Н	-0.646807000	4.573594000	0.940083000
Н	-0.465471000	5.437002000	3.227150000
Н	-0.200085000	3.880584000	5.147378000
Н	-0.052754000	1.438472000	4.718122000
Η	-4.433802000	4.993552000	-0.239147000
Η	-4.651815000	6.580073000	-0.981334000
Η	-3.082061000	6.139047000	-0.306489000
Η	-2.013854000	6.723956000	-2.547607000
Η	-3.621368000	7.180849000	-3.136499000
Η	-2.638180000	6.031750000	-4.048215000
Η	-5.294935000	3.903870000	-2.382884000
Η	-4.617912000	4.357020000	-3.949531000
Η	-5.548399000	5.537924000	-3.022148000
Η	-5.741845000	-3.232843000	-2.010852000
Η	-5.458860000	-2.194092000	-3.421340000
Η	-6.554664000	-1.671889000	-2.142705000
Η	-3.630659000	0.527244000	-1.593709000
Η	-5.374325000	0.462318000	-1.920628000
Η	-4.219888000	-0.012129000	-3.174787000
Η	-4.096591000	-0.934080000	0.481737000
Η	-4.891489000	-2.511267000	0.296634000
Η	-5.814501000	-1.020131000	0.057988000
Η	-2.475671000	2.410958000	-5.904243000
Η	-1.038439000	1.909373000	-6.793299000
Η	-1.032699000	3.444286000	-5.922310000
Η	-3.734587000	-5.815104000	-3.703538000
Η	-2.893143000	-6.356247000	-5.157563000
Η	-3.469414000	-4.692391000	-5.049247000
Η	-1.114310000	-3.858325000	-5.576243000
Η	-0.640030000	-5.557523000	-5.752639000
Η	0.274448000	-4.485845000	-4.684476000
Η	-0.095761000	-6.153068000	-2.751239000
Η	-1.009428000	-7.194869000	-3.845317000
Η	-1.738474000	-6.648618000	-2.325721000
Η	-0.981908000	-0.379848000	-3.884747000
Η	-1.023375000	-0.260688000	-5.654931000
Η	-2.444278000	0.193584000	-4.703043000
Η	1.150028000	1.075299000	-3.967492000
Η	1.104832000	2.674200000	-4.738695000

Η	1.007066000	1.209273000	-5.727695000
Η	-3.880595000	-3.652080000	-3.132776000
Η	0.319011000	-3.942157000	-2.452622000
Η	0.941315000	-4.539337000	-0.536977000
Η	3.145787000	-5.465435000	0.004204000
Η	5.042322000	-3.962952000	0.574426000
Η	4.662782000	-1.508923000	0.658299000
Н	4.031632000	0.170258000	-1.529386000
Η	2.417513000	0.571177000	-2.180413000
Η	5.397045000	1.873908000	-0.391627000
Η	5.923636000	4.271111000	-0.116937000
Η	4.272461000	5.991899000	-0.800240000
Η	2.095957000	5.292823000	-1.765827000
Η	1.574019000	2.893485000	-2.035557000
Η	-2.084086000	-0.222859000	3.738795000
Η	-2.505825000	-0.552952000	2.034792000
Η	-1.095603000	-1.989896000	5.162076000
Η	-0.904285000	-4.408683000	5.622498000
Η	-1.414644000	-6.056721000	3.839758000
Η	-2.124846000	-5.263023000	1.597970000
Η	-2.312372000	-2.842868000	1.143155000

Table S6 DFT-optimized cartesian coordinates of [1 ^{OX1}] ¹⁺ , using CAM-B3L ⁺
--

RuC54S2O2N2H62

Ru	0.070038000	0.051519000	-0.085989000
S	0.070730000	-0.001825000	2.312572000
S	2.466506000	0.035855000	0.022149000
0	-0.091733000	0.690570000	-2.037400000
0	-1.895293000	-0.534409000	-0.268209000
Ν	0.288515000	-1.878905000	-0.613580000
Ν	-0.307834000	2.007423000	0.182103000
С	-2.006768000	-1.603743000	-0.976239000
С	-0.881137000	2.587361000	-0.890391000
С	-0.795942000	-2.369330000	-1.245099000
С	-0.717749000	1.814743000	-2.114535000
С	-1.667688000	-0.339408000	2.843718000
С	0.205988000	1.773090000	2.514829000
С	2.638042000	-1.741676000	-0.140990000
С	3.202182000	0.666108000	-1.551507000
С	1.507542000	-2.537874000	-0.412342000
С	0.011514000	2.617987000	1.401603000
С	-3.272376000	-2.090937000	-1.453372000

С	-1.595302000	3.814508000	-0.915780000
С	-0.847263000	-3.494055000	-2.111561000
С	-1.189396000	2.352340000	-3.360480000
С	-1.870291000	-0.131305000	4.314876000
С	0.572701000	2.290372000	3.750999000
С	3.878454000	-2.322448000	0.099069000
С	3.472655000	2.139924000	-1.426227000
С	1.655962000	-3.931143000	-0.368480000
С	0.254079000	3.987716000	1.561428000
С	-4.578513000	-1.371839000	-1.096570000
С	-3.234808000	-3.205793000	-2.248037000
С	-2.082257000	4.302104000	-2.096205000
С	-2.042600000	-3.909214000	-2.627219000
С	-1.837896000	3.558481000	-3.297833000
С	-1.004596000	1.580531000	-4.674091000
С	-1.377674000	-1.056108000	5.238996000
С	-2.547604000	0.996179000	4.778209000
С	0.759031000	3.659894000	3.901779000
С	4.018552000	-3.704012000	0.079231000
С	2.659522000	3.068016000	-2.075531000
С	4.540890000	2.598489000	-0.651898000
С	2.898430000	-4.500994000	-0.134710000
С	0.615231000	4.497010000	2.801022000
С	-4.753779000	-1.354289000	0.433565000
С	-5.798683000	-2.079945000	-1.699406000
С	-4.557267000	0.071184000	-1.634965000
С	-2.890375000	5.596998000	-2.192383000
С	-2.167102000	-5.085404000	-3.596651000
С	-1.575458000	2.353507000	-5.870077000
С	-1.737817000	0.228231000	-4.593266000
С	0.492128000	1.338560000	-4.944176000
С	-1.557075000	-0.854014000	6.600680000
С	-2.731130000	1.197628000	6.142164000
С	2.909277000	4.431371000	-1.953911000
С	4.789473000	3.958834000	-0.527823000
С	-4.282515000	5.288656000	-2.774960000
С	-2.153410000	6.585777000	-3.115581000
С	-3.079081000	6.263838000	-0.825393000
С	-3.070244000	-6.165039000	-2.970390000
С	-2.791398000	-4.593903000	-4.916319000
С	-0.808182000	-5.719238000	-3.913205000
С	-2.233827000	0.275078000	7.054666000
С	3.971872000	4.878957000	-1.177931000
Η	4.171223000	5.941653000	-1.087352000
Η	2.276609000	5.142634000	-2.475113000
Н	5.627355000	4.301885000	0.069895000

Η	0.805997000	5.560175000	2.900985000
Η	1.042313000	4.064467000	4.866828000
Η	0.720820000	1.617828000	4.588513000
Η	-2.941556000	1.715763000	4.066314000
Η	-3.266102000	2.074736000	6.490869000
Η	-2.378461000	0.430058000	8.118676000
Η	-1.175545000	-1.581249000	7.309663000
Η	-0.854536000	-1.941621000	4.887755000
Η	2.988298000	-5.581465000	-0.102267000
Η	4.987317000	-4.154405000	0.263180000
Η	0.787580000	-4.566465000	-0.481011000
Η	-3.789490000	-4.173829000	-4.770015000
Η	-2.167771000	-3.826349000	-5.383500000
Η	-2.885191000	-5.427525000	-5.617994000
Η	-3.172892000	-7.009297000	-3.657924000
Η	-0.946591000	-6.553980000	-4.604562000
Η	-0.126869000	-5.008481000	-4.389809000
Н	-0.324453000	-6.116091000	-3.015656000
Η	0.076291000	-3.976938000	-2.393419000
Η	-4.168622000	-3.579992000	-2.644525000
Η	4.731761000	-1.689611000	0.322294000
Η	4.124147000	0.096522000	-1.686854000
Η	2.509892000	0.436820000	-2.361072000
Н	5.186674000	1.884515000	-0.147693000
Н	1.837510000	2.720593000	-2.691230000
Н	-5.491443000	0.575808000	-1.370328000
Н	-3.727683000	0.643886000	-1.219677000
Η	-4.472278000	0.076186000	-2.725404000
Η	-5.898916000	-3.107565000	-1.337957000
Η	-5.767737000	-2.096956000	-2.792803000
Η	-6.704236000	-1.542026000	-1.408397000
Η	-4.783156000	-2.371776000	0.835210000
Η	-3.942869000	-0.810592000	0.917544000
Η	-5.697054000	-0.865123000	0.693508000
Η	-4.225434000	4.853404000	-3.775694000
Η	-4.868189000	6.209226000	-2.850473000
Η	-4.829698000	4.590884000	-2.134728000
Η	-1.163668000	6.830510000	-2.719209000
Η	-2.723282000	7.515553000	-3.198145000
Η	-2.023110000	6.190404000	-4.125992000
Η	-2.221968000	3.978610000	-4.217254000
Η	-2.652745000	2.519264000	-5.778186000
Η	-1.085238000	3.321910000	-6.007359000
Η	-1.412900000	1.773351000	-6.781673000
Η	-1.349935000	-0.391923000	-3.784680000
Н	-1.610447000	-0.315627000	-5.534329000

Η	-2.809708000	0.377370000	-4.435555000
Η	0.614177000	0.805941000	-5.891811000
Η	1.035993000	2.284946000	-5.023982000
Η	0.943835000	0.735804000	-4.155990000
Η	0.207535000	4.644258000	0.702940000
Η	-3.626370000	5.620896000	-0.129940000
Η	-2.123192000	6.536055000	-0.367843000
Η	-3.657094000	7.183483000	-0.944165000
Η	-1.822370000	-1.379406000	2.546866000
Η	-2.321880000	0.285447000	2.236404000
Η	-1.788768000	4.322544000	0.017211000
Η	-2.644666000	-6.540322000	-2.035327000
Η	-4.075128000	-5.792464000	-2.756947000

Table S7 DFT-optimized cartesian coordinates of $[1^{OX2}]^{2+}$, using CAM-B3LYP

RuC54S2O2N2H62

Ru	0.051804000	0.043588000	-0.145400000
S	0.023346000	-0.057219000	2.225945000
S	2.416209000	0.056798000	-0.037744000
0	-0.166590000	0.745548000	-2.118493000
0	-1.949192000	-0.587505000	-0.386801000
Ν	0.253710000	-1.926565000	-0.653621000
Ν	-0.270962000	2.042873000	0.121790000
С	-2.054030000	-1.678351000	-0.992709000
С	-0.782638000	2.673894000	-0.909805000
С	-0.796742000	-2.459530000	-1.237444000
С	-0.682000000	1.885037000	-2.182076000
С	-1.713148000	-0.409240000	2.774919000
С	0.167590000	1.711814000	2.472550000
С	2.628297000	-1.710001000	-0.260651000
С	3.188769000	0.782776000	-1.549883000
С	1.516131000	-2.543854000	-0.490991000
С	0.028884000	2.600125000	1.385528000
С	-3.329216000	-2.236621000	-1.406856000
С	-1.410127000	3.963224000	-0.929163000
С	-0.848352000	-3.635547000	-2.056849000
С	-1.122419000	2.480457000	-3.430406000
С	-1.893750000	-0.215874000	4.250059000
С	0.506685000	2.185760000	3.732119000
С	3.891105000	-2.257925000	-0.074963000
С	3.288591000	2.275961000	-1.384384000
С	1.695542000	-3.931579000	-0.427564000

С	0.331131000	3.952478000	1.580550000
С	-4.647302000	-1.530221000	-1.071603000
С	-3.261796000	-3.392154000	-2.117384000
С	-1.849689000	4.484037000	-2.100458000
С	-2.041846000	-4.091242000	-2.509365000
С	-1.652735000	3.727156000	-3.332756000
С	-1.022643000	1.707303000	-4.751424000
С	-1.358928000	-1.133657000	5.158163000
С	-2.595750000	0.889917000	4.730013000
С	0.736104000	3.545729000	3.923672000
С	4.064818000	-3.637590000	-0.090910000
С	2.585462000	3.127189000	-2.236554000
С	4.098712000	2.828403000	-0.388777000
С	2.960393000	-4.468901000	-0.238665000
С	0.672125000	4.417215000	2.843486000
С	-4.794680000	-1.406036000	0.456683000
С	-5.850984000	-2.320582000	-1.600301000
С	-4.676429000	-0.131559000	-1.717846000
С	-2.570587000	5.823462000	-2.202579000
С	-2.183715000	-5.301123000	-3.425849000
С	-1.562545000	2.538149000	-5.922534000
С	-1.860771000	0.416766000	-4.660494000
С	0.444723000	1.353395000	-5.058429000
С	-1.521370000	-0.944298000	6.523743000
С	-2.763447000	1.076305000	6.098080000
С	2.686107000	4.508213000	-2.095795000
С	4.196455000	4.206454000	-0.245395000
С	-3.968850000	5.602042000	-2.813682000
С	-1.748632000	6.760124000	-3.111431000
С	-2.737653000	6.493169000	-0.834877000
С	-3.039161000	-6.367976000	-2.711993000
С	-2.879034000	-4.866102000	-4.731618000
С	-0.826772000	-5.918883000	-3.777494000
С	-2.223539000	0.162264000	6.995287000
С	3.487775000	5.049621000	-1.096933000
Η	3.578916000	6.125849000	-0.994774000
Η	2.153352000	5.160664000	-2.780106000
Η	4.839854000	4.623735000	0.521773000
Η	0.910418000	5.466517000	2.977332000
Η	1.001750000	3.913084000	4.908593000
Η	0.608013000	1.490034000	4.557272000
Η	-3.026722000	1.601060000	4.030709000
Η	-3.320729000	1.932623000	6.462454000
Η	-2.356473000	0.305216000	8.062280000
Η	-1.109379000	-1.664654000	7.222214000
Η	-0.818906000	-2.004085000	4.794603000

Η	3.079535000	-5.545391000	-0.188127000
Η	5.052720000	-4.059384000	0.056194000
Н	0.841147000	-4.592678000	-0.478912000
Η	-3.879353000	-4.460428000	-4.560984000
Η	-2.290254000	-4.112298000	-5.261768000
Η	-2.988879000	-5.730864000	-5.390604000
Н	-3.150083000	-7.238702000	-3.362914000
Н	-0.978865000	-6.778872000	-4.432864000
Н	-0.180769000	-5.215000000	-4.310433000
Н	-0.298748000	-6.279312000	-2.889568000
Н	0.075785000	-4.103834000	-2.358201000
Н	-4.189253000	-3.830660000	-2.458886000
Н	4.738769000	-1.607019000	0.113866000
Н	4.174016000	0.315947000	-1.622646000
Η	2.594180000	0.498510000	-2.418121000
Η	4.666863000	2.178854000	0.271361000
Н	1.984330000	2.707631000	-3.036523000
Η	-5.629066000	0.353838000	-1.489739000
Η	-3.874234000	0.506384000	-1.343928000
Н	-4.591875000	-0.203093000	-2.805970000
Η	-5.912895000	-3.321008000	-1.162269000
Н	-5.839378000	-2.414261000	-2.690135000
Η	-6.769078000	-1.793667000	-1.332154000
Η	-4.770868000	-2.388827000	0.936723000
Η	-4.009545000	-0.785085000	0.888330000
Η	-5.756466000	-0.945039000	0.695524000
Η	-3.927481000	5.174139000	-3.818459000
Н	-4.487721000	6.560511000	-2.892575000
Н	-4.574849000	4.942428000	-2.186389000
Н	-0.753573000	6.942618000	-2.695901000
Η	-2.257999000	7.723115000	-3.197417000
Н	-1.628581000	6.366989000	-4.124084000
Η	-1.999192000	4.201627000	-4.240611000
Η	-2.621085000	2.785980000	-5.801258000
Η	-0.999372000	3.464868000	-6.066046000
Н	-1.470212000	1.959162000	-6.843800000
Н	-1.484178000	-0.259053000	-3.891120000
Η	-1.822698000	-0.108008000	-5.618753000
Η	-2.908716000	0.645469000	-4.446775000
Η	0.497666000	0.809672000	-6.005251000
Η	1.054194000	2.255492000	-5.166595000
Η	0.880383000	0.719325000	-4.284789000
Η	0.362252000	4.629269000	0.737570000
Η	-3.338680000	5.885735000	-0.151816000
Η	-1.774065000	6.705760000	-0.362054000
Η	-3.253563000	7.447492000	-0.958421000

-1.860003000	-1.448967000	2.471823000
-2.379653000	0.220707000	2.186303000
-1.588638000	4.470443000	0.006183000
-2.566296000	-6.700183000	-1.783768000
-4.044885000	-6.013187000	-2.473480000
	-1.860003000 -2.379653000 -1.588638000 -2.566296000 -4.044885000	-1.860003000-1.448967000-2.3796530000.220707000-1.5886380004.470443000-2.566296000-6.700183000-4.044885000-6.013187000

Bonds	1	Calcd. param.	Calcd. param.
	X-ray (Å)	using CAM-	using B3LYP
		B3LYP	(CSS, S=0)
		(BS, S = 0)	QROs
		(Å)	(Å)
Ru1–N1	1.968(3)	2.024	1.983
Ru1–N2	1.964(3)	2.013	1.983
Ru1–O1	2.018(3)	2.062	2.029
Ru1–O2	2.015(3)	2.056	2.024
Ru1–S1	2.328(11)	2.404	2.349
Ru1–S2	2.328(11)	2.409	2.358
C14-N1	1.394(5)	1.365	1.377
C1-O1	1.333(4)	1.302	1.318
C1–C2	1.411(5)	1.430	1.403
С2-С7	1.390(5)	1.378	1.390
С7-С8	1.413(5)	1.418	1.407
C8–C13	1.380(5)	1.374	1.390
C13–C14	1.389(5)	1.414	1.404
C1–C14	1.433(5)	1.441	1.437
C41–N2	1.387(5)	1.370	1.378
C28–O2	1.329(5)	1.307	1.312
C28–C29	1.410(6)	1.424	1.405
C29–C34	1.370(6)	1.385	1.388
C34–C35	1.433(5)	1.411	1.408
C40–C41	1.403(5)	1.407	1.404
C28–C41	1.434(5)	1.440	1.434
C35–C40	1.360(6)	1.379	1.390

Table S8 X-ray determined and calculated [CAM-B3LYP (BS-DFT) and B3LYP (DFT)] bond lengths (Å) of 1

	2	Calcd. param.	Calcd. param.
	X-ray (Å)	using CAM-B3LYP	using B3LYP
		(BS, $S = 1/2$)	(S = 1/2)
		(Å)	QROs
			(Å)
Ru1–N1	1.991(4)	2.010	1.998
Ru1–N2	1.983(4)	2.013	1.996
Ru1–O1	2.022(3)	2.059	2.049
Ru1–O2	2.026(4)	2.058	2.048
Ru1–S1	2.325(11)	2.399	2.333
Ru1–S2	2.323(11)	2.398	2.331
C14–N1	1.355(6)	1.347	1.353
C1–O1	1.303(6)	1.289	1.294
C1–C2	1.421(7)	1.436	1.412
C2–C7	1.371(7)	1.370	1.379
С7–С8	1.432(7)	1.434	1.422
C8–C13	1.355(7)	1.370	1.377
C13–C14	1.425(7)	1.436	1.416
C1–C14	1.446(7)	1.456	1.454
C41–N2	1.364(6)	1.347	1.353
C28–O2	1.302(6)	1.287	1.292
C28–C29	1.424(6)	1.437	1.413
C29–C34	1.374(7)	1.369	1.377
C34–C35	1.432(6)	1.435	1.423
C40–C41	1.411(6)	1.420	1.413
C28–C41	1.454(6)	1.457	1.453
C35–C40	1.373(7)	1.366	1.377

Table S9 X-ray determined and calculated [CAM-B3LYP (BS-DFT) and B3LYP (DFT)] bond lengths (Å) of ${\bf 2}$

	3	Calcd. param.	Calcd. param.
	X-ray (Å)	using BS-DFT	using B3LYP
		(Å)	QROs
			(Å)
Ru1–N1	1.987(5)	2.042	2.014
Ru1–N2	1.994(5)	2.044	2.011
Ru1–O1	2.034(4)	2.105	2.071
Ru1–O2	2.038(4)	2.112	2.072
Ru1–S1	2.3198(14)	2.373	2.324
Ru1–S2	2.3125(13)	2.366	2.323
C14–N1	1.360(6)	1.313	1.332
C101	1.296(7)	1.252	1.270
C1–C2	1.423(8)	1.451	1.421
C2–C7	1.368(8)	1.358	1.369
С7–С8	1.437(8)	1.459	1.438
C8–C13	1.379(8)	1.355	1.367
C13–C14	1.412(8)	1.434	1.429
C1–C14	1.459(8)	1.500	1.478
C41–N2	1.351(8)	1.314	1.332
C28–O2	1.297(7)	1.252	1.270
C28–C29	1.434(9)	1.452	1.422
C29–C34	1.362(9)	1.358	1.368
C34–C35	1.453(9)	1.450	1.439
C40–C41	1.413(8)	1.434	1.428
C28–C41	1.458(8)	1.500	1.476
C35–C40	1.349(9)	1.355	1.367

Table S10 X-ray determined and calculated [CAM-B3LYP (BS-DFT) and B3LYP(DFT)] bond lengths (Å) of $\bf 3$

Table S11 Mulliken spin densities for 1 and $[1^{OX1}]^{1+}$, using CAM-B3LYP and B3LYP functionals^{*a*}

Complex	Density functional	Mullike	Mulliken spin-densities		
		Ru	(L) ₁	(L) ₂	
1	CAM-B3LYP	0.05	0.73	-0.78	0.7959
	B3LYP	0.02	-0.29	0.26	0.1437
[1 ^{OX1}] ¹⁺	CAM-B3LYP	-0.49	0.74	0.76	1.0570
	B3LYP	-0.25	0.64	0.61	0.8297

 a (L)₁ and (L)₂ represent two ligands.

Table S12 Computed energy values of CSS and BS solution for 1, using CAM-B3LYP and B3LYP functional

Density	$-E_{CSS}$ (a.u.)	$-E_{BS}$ (a.u.)
functional		
CAM-B3LYP	3243.16345576	3243.16872671
B3LYP	3245.606080	3245.60611414

Table S13 Computed energy values for all three possible spin states of $[1^{ox1}]^{1+}$, using CAM-B3LYP functional

$-E_{\rm HS}$ (a.u.) $S = 3/2$	$-E_{\rm LS1}$ (a.u.) $Ms = 1/2$	$-E_{\rm LS2}$ (a.u.) $M_{\rm S} = \frac{1}{2}$
3243.95672395	3243.95542340	3243.98051692

S60

Excitation	λ	f	Transition	Assignment
energy	(nm)			
(eV)				
1.0943	1133	0.1678	$\begin{array}{l} \alpha \text{-H}[\sim 85\% \text{L}] \rightarrow \\ \alpha \text{-L}[\sim 77\% \text{L}] (45\%) \end{array}$	Inter-ligand CT in (L ^{ISQ}) ring
			$\begin{array}{l} \alpha \text{-H-1[} \sim 72\%\text{L}] \rightarrow \\ \alpha \text{-L[} \sim 77\%\text{L}] (11\%) \end{array}$	Intra-ligand CT in (L ^{ISQ}) ring
			β -H[~84%L] \rightarrow β -L[~81%L] (14%)	Inter-ligand CT in (L ^{ISQ}) ring
1.4030	884	0.0496	$\alpha -H-1[\sim 72\%L] \rightarrow \alpha -L[\sim 77\%L] (46\%)$	Intra-ligand CT in (L ^{ISQ}) ⁻ ring
			β-H[~84%L] → β-L[~81%L] (28%)	Inter-ligand CT in (L ^{ISQ}) ring
1.5419	804	0.0649	$\begin{array}{l} \alpha \text{-H-1[} \sim 72\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[} \sim 77\%\text{L}\text{]} (15\%) \end{array}$	Intra-ligand CT in (L ^{ISQ}) ring
			$\beta\text{-H-1[}\sim70\%\text{L}\text{]} \rightarrow \beta\text{-L[}\sim81\%\text{L}\text{]} (61\%)$	Intra-ligand CT in $(L^{ISQ})^{-}$ ring and minor MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
1.9519	635	0.0206	$ \begin{array}{l} \beta \text{-H-3}[\sim 54\%\text{M}] \rightarrow \\ \beta \text{-L} [\sim 81\%\text{L}] (38\%) \end{array} $	MLCT involving $\text{Ru} \rightarrow (L^{\text{ISQ}})^{\bullet-}$, along with intra-ligand CT in $(L^{\text{ISQ}})^{\bullet-}$ ring
			β -H-2[~68%M] \rightarrow β -L [~81%L] (38%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$, along with inter-ligand CT in $(L^{ISQ})^{-}$ ring
2.3352	531	0.0383	$\begin{array}{l} \alpha \text{-H-5[~61\%L]} \rightarrow \\ \alpha \text{-L[~77\%L]} (18\%) \end{array}$	Inter-ligand CT in $(L^{ISQ})^{\leftarrow}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{\leftarrow}$
			α-H-4[~53%L] → α-L [~77%L] (12%)	Inter-ligand CT in $(L^{ISQ})^{-}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$

Table S14 TD-DFT-calculated electronic transitions of 1, using CAM-B3LYP

			$\begin{array}{l} \alpha \text{-H-3}[\sim 53\%\text{L}] \rightarrow \\ \alpha \text{-L}[\sim 77\%\text{L}] (24\%) \end{array}$	Intra-ligand CT in $(L^{ISQ})^{\leftarrow}$ ring, along with MLCT involving Ru $\rightarrow (L^{ISQ})^{\leftarrow}$
			$\begin{array}{l} \alpha \ \text{-H-2}[\sim 62\%\text{L}] \rightarrow \\ \alpha \ \text{-L}[\sim 77\%\text{L}] \ (20\%) \end{array}$	Inter-ligand CT in $(L^{ISQ})^{-}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
2.3965	517	0.0316	β -H-5[~57%L] \rightarrow β -L[~81%L] (22%)	Inter-ligand CT in $(L^{ISQ})^{-}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
			β -H-3[~54%L] \rightarrow β -L[~81%L] (31%)	Intraligand CT in $(L^{ISQ})^{\bullet-}$ ring, along with MLCT involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
			$ \begin{array}{l} \beta \ \text{-H-2}[\sim 68\%\text{L}] \rightarrow \\ \beta \ \text{-L}[\sim 81\%\text{L}] \ (23\%) \end{array} $	Inter-ligand CT in $(L^{ISQ})^{-}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
2.8435	436	0.0686	α -H-4[~53%L] → α -L[~77%L] (10%)	Inter-ligand CT in $(L^{ISQ})^{-}$ ring and MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
			α -H-3[~53%L] → $ α -L [~77%L] (12%)$	Intra-ligand CT in $(L^{ISQ})^{-}$ ring, along with MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
			β -H-4[~52%L] \rightarrow β -L[~81%L] (25%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
			β -H-3[~54%L] \rightarrow β -L[~81%L] (12%)	Intra-ligand CT in $(L^{ISQ})^{\leftarrow}$ ring, along with MLCT involving Ru $\rightarrow (L^{ISQ})^{\leftarrow}$
3.3633	357	0.1171	$\begin{array}{l} \alpha -\mathrm{H}[\sim 85\%\mathrm{L}] \rightarrow \\ \alpha -\mathrm{L}+1[\sim 58\%\mathrm{L}] \\ (13\%) \end{array}$	$(L^{ISQ})^{-} \rightarrow \text{amino-thioether}$
			$\begin{array}{l} \alpha \ \text{-H}[\sim 85\% \text{L}] \rightarrow \\ \alpha \ \text{-L}+3[\sim 47\% \text{L}](8\%) \end{array}$	CT in (L ^{ISQ}) ring
			$\beta \text{-H}[\sim 84\% \text{L}] \rightarrow \beta \text{-L}+1[\sim 57\% \text{L}]$ (10%)	$CT (L^{ISQ})^{-} \rightarrow amino-thioether$
3.3633	339	0.0782	$\begin{array}{l} \alpha \text{-H-5}[\overline{\sim}61\%\text{L}] \rightarrow \\ \alpha \text{-L}[\sim77\%\text{L}] (11\%) \end{array}$	Inter-ligand $\overline{\text{CT}}$ in $(L^{\text{ISQ}})^{-}$ ring and MLCT involving Ru \rightarrow

	(L ^{ISQ}) −
$\begin{array}{l} \alpha \ \text{-H}[\sim 85\% \text{L}] \rightarrow \\ \alpha \ \text{-L}+3[\sim 47\% \text{L}] \\ (16\%) \end{array}$	CT in (L ^{ISQ}) ring
$\begin{array}{l} \alpha \ \text{-H}[\sim 85\%\text{L}] \rightarrow \\ \alpha \ \text{-L}+1[\sim 58\%\text{L}] \\ (7\%) \end{array}$	CT involving $(L^{ISQ})^{\bullet-} \rightarrow amino-$ thioether

Excitation energy	λ (nm)	f	Transition	Assignment
(eV)	. ,			
1.1356	1091	0.1811	$\begin{array}{l} \alpha \text{-H}[\sim 95\% \text{L}] \rightarrow \\ \alpha \text{-L}[\sim 70\% \text{L}] (44\%) \end{array}$	Inter-ligand charge-transfer (CT) between two ligands involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ with minor intra- ligand CT in $(L^{ISQ})^{\bullet-}$ and ligand- to-metal (LM)CT from $(L^{ISQ})^{\bullet-} \rightarrow$ Ru
			β -H[~95%L] \rightarrow β -L[~70%L] (43%)	Inter-ligand CT between two ligands involving $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-}$ with minor intra-ligand CT in $(L^{ISQ})^{\bullet-}$ and LMCT from $(L^{ISQ})^{\bullet-}$ $\rightarrow Ru$
1.6941	731	0.0641	α -H-2[~66%L] → α -L[~70%L] (33%)	Combination of inter- and intra- ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{}$ along with some amount of metal-to-ligand $(ML)CT$, involving $Ru \rightarrow (L^{ISQ})^{}$
			β -H-2[~64%L] \rightarrow β -L[~70%L] (30%)	Combination of inter- and intra- ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{*-}$ along with some amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{*-}$
			α -H-4[~53%L] \rightarrow α -L[~70%L] (7%)	Inter-ligand CT between two ligands involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ along with significant amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
2.1116	587	0.0479		Combination of intra and inter- ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{}$ and significant MLCT, involving Ru $\rightarrow (L^{ISQ})^{}$
			α-H-3[~58%L] →	Combination of intra- and inter-

 Table S15 TD-DFT-calculated electronic transitions of 1, using B3LYP

			α-L[~70%L] (18%)	ligandCTinvolving $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-}$ andMLCT,involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
			β-H-5[~51%L] → β-L[~70%L] (26%)	Combination of intra- and inter- ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{-}$ and significant MLCT, involving Ru $\rightarrow (L^{ISQ})^{-}$
			$\beta\text{-H-3}[\sim59\%\text{L}] \rightarrow \beta\text{-L}[\sim70\%\text{L}] (12\%)$	Inter- and intra-ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{-}$ with substantial amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{-}$
2.2944	540	0.0405	β-H-3[~59%M] → β-L[~70%L] (10%)	Inter- and intra-ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{}$ with substantial amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{}$
			α-H-5[~54%L] → α-L[~70%L] (24%)	Combination of intra- and inter- ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{}$ and significant MLCT, involving Ru $\rightarrow (L^{ISQ})^{}$
			α-H-3[~58%L] → α-L[~70%L] (14%)	Combination of intra- and inter- ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{-}$ and MLCT, involving Ru $\rightarrow (L^{ISQ})^{-}$
2.3975	517	0.0775	$\begin{array}{l} \alpha \text{-H-5[}\sim54\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[}\sim70\%\text{L}\text{]} (10\%) \end{array}$	Combination of intra- and inter- ligand CT involving $(L^{AP})^{2-}/(L^{ISQ})^{-}$ and significant MLCT, involving Ru $\rightarrow (L^{ISQ})^{-}$
			α-H-4[~53%L] → α-L[~70%L] (26%)	Inter-ligand CT between two ligands involving $(L^{AP})^{2-/}(L^{ISQ})^{-}$ along with significant amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{-}$
			β -H-5[~51%L] \rightarrow	Combination of intra- and inter-

			β-L[~70%L] (20%)	ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ and significant MLCT, involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
			β-H-4[~53%L] → β-L[~70%L] (16%)	Inter-ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ with substantial amount of MLCT, involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
2.7755	446	0.0118	β-H-6[~95%L] → β-L[~70%L] (11%)	Inter- and intra-ligand CT from amino-thioether and $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ ring $\rightarrow (L^{ISQ})^{\bullet-}$, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β-H[~95%L] → β-L+1[~70%L] (29%)	Intra-ligand CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow \text{amino-thioether part, along with LMCT, involving (L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow \text{Ru}$
			α-H-6[~96%L] → α-L[~70%L] (14%)	Inter- and intra-ligand CT from amino-thioether and $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow (L^{ISQ})^{\bullet-}$, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			$\begin{array}{l} \alpha \text{-H}[\sim 95\% \text{L}] \rightarrow \\ \alpha \text{-L}+1[\sim 71\% \text{L}] (32\%) \end{array}$	Intra-ligand CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether part, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
2.8715	431	0.0393	$\begin{array}{l} \alpha \text{-H}[\sim 95\%\text{L}] \rightarrow \\ \alpha \text{-L}+1[\sim 71\%\text{L}] \\ (31\%) \end{array}$	Intra-ligand CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether part, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β -H[~95%L] \rightarrow β -L+1[~70%L]	Intra-ligand CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow \text{amino-thioether part, along with LMCT,}$

			(31%)	involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
3.0430	407	0.0142	$\begin{array}{l} \alpha \text{-H-7[} \sim 91\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[} \sim 70\%\text{L}\text{]} (12\%) \end{array}$	Phenyl-amino-thioether \rightarrow (L ^{ISQ}) ^{•-} along with LMCT, involving (L ^{AP}) ²⁻ /(L ^{ISQ}) ^{•-} \rightarrow Ru
			α-H-6[~98%L] → α-L[~70%L] (31%)	Inter- and intra-ligand CT from amino-thioether and $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow (L^{ISQ})^{\bullet-}$, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β -H-6[~98%L] \rightarrow β -L[~70%L] (30%)	Inter- and intra-ligand CT from amino-thioether and $(L^{AP})^{2-}$ ring $\rightarrow (L^{AP})^{2-}/(L^{ISQ})^{\bullet-}$, along with LMCT, involving $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-}$ $\rightarrow Ru$
3.0525	406	0.0209		CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether with subsequent LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			$\begin{array}{l} \alpha \text{-H}[\sim 95\% \text{L}] \rightarrow \\ \alpha \text{-L}+3[\sim 82\% \text{L}] (23\%) \end{array}$	CT from $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether with subsequent LMCT, involving $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β -H[~95%L] \rightarrow β -L+2[~75%L] (16%)	CT from $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β -H[~95%L] \rightarrow β -L+3[~80%L] (25%)	CT from $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-} \rightarrow$ amino-thioether, along with LMCT, involving $(L^{AP})^{2-}/(L^{ISQ})^{\bullet-} \rightarrow Ru$
			α-H-7[~91%L] →	Phenyl-amino-thioether \rightarrow

3.1694	391	0.0208	α-L[~70%L] (26%)	$(L^{ISQ})^{\bullet-}$, along with LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			$\beta\text{-H-7[~91\%L]} \rightarrow \beta\text{-L[~70\%L]} (23\%)$	Phenyl-amino-thioether \rightarrow (L ^{ISQ}) ^{•-} with subsequent LMCT, involving (L ^{AP}) ²⁻ /(L ^{ISQ}) ^{•-} \rightarrow Ru
3.2052	386	0.0594	α -H-8[~94%L] \rightarrow α -L[~70%L] (16%)	Inter-ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ with subsequent LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			α-H-7[~91%L] → α -L[~70%L] (18%)	Phenyl-amino-thioether \rightarrow (L ^{ISQ}) ^{•-} with subsequent LMCT, involving (L ^{AP}) ²⁻ /(L ^{ISQ}) ^{•-} \rightarrow Ru
			β-H-8[~95%L] → β-L[~70%L] (17%)	Inter-ligand CT involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-}$ with subsequent LMCT, involving $(L^{AP})^{2-/}(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β-H-7[~91%L] → β-L[~70%L] (17%)	Phenyl-amino-thioether \rightarrow (L ^{ISQ}) ^{•-} with subsequent LMCT, involving (L ^{AP}) ²⁻ /(L ^{ISQ}) ^{•-} \rightarrow Ru

Excitation	λ	f	Transition	Assignment
energy (eV)	(nm)			
0.8657	1432	0.0497	a-H-4[~60%L] → a-L[~56%L] (19%) a -H-2[~82%L] → a -L[~56%L] (10%) a -H[~96%L] → a -L[~56%L] (54%)	Inter-ligand CT in $(L^{IBQ})^0$ ring to $(L^{ISQ})^-$ CT in $(L^{ISQ})^-$ with LMCT involving $(L^{ISQ})^- \to Ru$
				Combination of CT in $(L^{ISQ})^{\bullet-}$ and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$
1.3714	904	0.039	$\beta \text{-H}[\sim 80\% \text{L}] \rightarrow \beta \text{-L}[\sim 94\% \text{L}] (43\%) \alpha \text{-H}[\sim 96\% \text{L}] \rightarrow \alpha \text{-L}[\sim 56\% \text{L}] (24\%) \alpha \text{-H}(\sim 56\% \text{L}] (24\%) \alpha \text{-H}(\sim 56\% \text{L}] \rightarrow \alpha \text{-L}[\sim 56\% \text{L}] (10\%)$	Intra-ligand CT $(L^{ISQ})^{\bullet-}$ ring Combination of CT in $(L^{ISQ})^{\bullet-}$ and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$
				LMCT involving $(L^{ISQ})^{-} \rightarrow Ru$
1.4816	837	0.0592	$\alpha -H-4[\sim 60\% L] \rightarrow$ $\alpha -L[\sim 56\% L] (30\%)$ $\alpha -H[\sim 96\% L] \rightarrow$ $\alpha -L[\sim 56\% L] (16\%)$	Inter-ligand CT involving $(L^{ISQ})^{\bullet-}$ and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow$ Ru Combination of CT in $(L^{ISQ})^{\bullet-}$ and
			β-H[~80%L]→ β-L[~94%L] (23%)	LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$ Intra-ligand CT $(L^{ISQ})^{\bullet-}$ ring

Table S16 TD-DFT-calculated electronic transitions of	$[1^{OX1}]^{1+}$, using	CAM-B3LYP

1.8505	670	0.0125	α -H-3[~65%L] → α -L[~54%L] (51%)	Combination of CT in $(L^{ISQ})^{\bullet-}$ and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$
			$\begin{array}{l} \alpha \text{-H-1}[\sim 70\% \text{L}] \rightarrow \\ \alpha \text{-L} [\sim 54\% \text{L}] (19\%) \end{array}$	Combination of CT in $(L^{ISQ})^{\bullet-}$ and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$

2.4579	504	0.0323	β -H-5[~79%L] \rightarrow	Intra-ligand CT in (L ^{ISQ}) ring
			β -L[~94%L] (28%)	with small amount of MLCT
			β -H-1[~91%L] \rightarrow	involving $Ru \rightarrow (L^{ISQ})^{-}$ ring
			β-L+1[~87%L]	
			(17%)	Intra-ligand CT within (L ^{ISQ})
			β -H[~80%L] \rightarrow	
			β -L[~94%L] (12%)	Intra-ligand CT (L ^{ISQ}) ring
2.6661	465	0.07	β -H-9[~93%L] \rightarrow	Intra-ligand CT in phenyl ring of
			β-L+1[~87%L]	(L ^{ISQ}) [⊷] ring
			(11%)	
			β -H-8[~67%L] \rightarrow	Inter-ligand CT involving phenyl
			β-L[~94%L] (16%)	ring of (L ^{ISQ}) ^{•–} ring and MLCT
				involving $Ru \rightarrow (L^{ISQ})^{-}$ ring
			β -H-2[~57%L] \rightarrow	CT involving phenyl ring
			β-L+1[~87%L]	appended with thioether $\rightarrow (L^{ISQ})^{-}$
			(10%)	ring, along with MLCT involving
	1.60	0.0001	0. ** 05. 000/* 7	$\frac{\text{Ru} \rightarrow (L^{1SQ})^{-} \text{ring}}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$
2.6911	460	0.0901	β -H-9[~93%L] \rightarrow	Intra-ligand CT in phenyl ring of
			β -L[~94%L] (22%)	(L ^{ISQ}) ^{••} ring
				L (1' 1 CT 1 1 (180)-
			$\beta - H - \Im[\sim 80\% L] \rightarrow$	intra-ligand CT involving (L ^{15Q})
			$\beta - L + 1 [\sim 8 / \% L]$	ring
			(1270) $R \parallel 2[.570/1]$	
			$\rho \cdot \Pi \cdot 2[\sim 3770L] \rightarrow R I [.049/L] (109/L)$	CT involving phonyl ring
			$p - L[^{-94}/0L](10/0)$	appended with thisether $\rightarrow (I^{ISQ})^{\bullet-}$
			ß_H[~80%]] →	ring with MI CT involving $R_{\rm H} \rightarrow$
			$\beta - L + 1[\sim 87\% L]$	(LISQ) - ring
			(12%)	Intra-ligand CT within (I ^{ISQ}) ring
2 8939	428	0.0188	β -H-12[~65%L] \rightarrow	$\frac{\text{MLCT involving Ru} \rightarrow (L^{\text{ISQ}})^{-}}{\text{MLCT involving Ru} \rightarrow (L^{\text{ISQ}})^{-}}$
2.0707		0.0100	$\beta - L[\sim 94\% L] (14\%)$	and CT involving amino-thioether
				\rightarrow (L ^{ISQ}) ^{•-} ring
			β -H-10[~74%L] \rightarrow	CT involving amino-thioether \rightarrow
			$\beta - L[\sim 94\% L] (18\%)$	(L ^{ISQ}) ⁻ ring and MLCT involving
			β -H-3[~71%L] \rightarrow	$Ru \rightarrow (L^{ISQ})^{-}$
			β -L[~94%L] (24%)	CT involving phenyl ring
				appended with thioether $\rightarrow (L^{ISQ})^{-}$
				ring and MLCT involving Ru \rightarrow
				(L ^{ISQ}) ^{•–}
3.0546	406	0.1026	$\alpha \text{-H-9}[{\sim}60\%\text{L}] \rightarrow$	LMCT involving amino-thioether
			α -L[~54%L] (12%)	functionality of $(L^{ISQ})^{-} \rightarrow Ru$,
				along with CT from amino-
			α -H-1[~70%L] \rightarrow	thioether $\rightarrow (L^{1SQ})^{-1}$ ring
			$\alpha - L[\sim 54\% L] (11\%)$	
				CT in (L ^{ISQ}) and LMCT

3.0847	401	0.1287	$\begin{array}{l} \alpha \text{-H-2[}\sim82\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[}\sim54\%\text{L}\text{]} (12\%) \end{array}$	CT in $(L^{ISQ})^{\bullet-}$ with LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$
			β -H-2[~57%L] \rightarrow β -L+1[~87%L] (10%)	CT in volving phenyl ring appended with thioether $\rightarrow (L^{ISQ})^{-}$ ring with MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$ ring
			β -H-3[~71%L] \rightarrow β -L[~94%L] (24%)	CT in volving phenyl ring appended with thioether $\rightarrow (L^{ISQ})^{-}$ ring and MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
3.6367	340	0.016	$\begin{array}{c} \alpha -\mathrm{H}[\sim 96\%\mathrm{L}] \rightarrow \\ \alpha -\mathrm{L}+1[\sim 77\%\mathrm{L}] \\ (11\%) \end{array}$	CT in $(L^{ISQ})^{-}$ ring and LMCT involving $(L^{ISQ})^{-}$ ring \rightarrow Ru
			$\begin{array}{l} \alpha \ \text{-H}[\sim 96\% \text{L}] \rightarrow \\ \alpha \ \text{-L}{+}2[\sim 70\% \text{L}] \\ (18\%) \end{array}$	CT in $(L^{ISQ})^{\bullet-}$ ring and LMCT involving $(L^{ISQ})^{\bullet-} \rightarrow Ru$
			$\beta \text{-H-3}[\sim71\%\text{L}] \rightarrow \beta \text{-L}[\sim94\%\text{L}] (24\%)$	CT involving phenyl ring appended with thioether $\rightarrow (L^{ISQ})^{-}$ ring and MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$

 Table 17 TD-DFT-calculated electronic transitions of [1^{OX1}]¹⁺, using B3LYP

Excitation energy (eV)	λ (nm)	f	Transition	Assignment
0.8100	1530	0.065	$\begin{array}{l} \alpha \text{-H[}\sim95\%\text{L]} \rightarrow \\ \alpha \text{-L[}\sim62\%\text{L]} (89\%) \end{array}$	Intra-ligand (CT) in $(L^{ISQ})^{-}$ ring and LMCT involving $(L^{ISQ})^{-} \rightarrow Ru$
1.3413	924	0.021	$\beta-\text{H}[\sim68\%\text{L}] \rightarrow \beta-\text{L}[\sim96\%\text{L}] (10\%)$	Intra-ligand CT in $(L^{ISQ})^{-}$ along with MLCT involving Ru \rightarrow $(L^{ISQ})^{-}$
			$\begin{array}{l} \alpha \text{-H-3[}\sim 62\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[}\sim 62\%\text{L}\text{]} (10\%) \end{array}$	Intra-ligand CT in (L ^{ISQ})
			α-H-2[~57%L] → α-L[~62%L] (50%)	Intra-ligand CT in $(L^{ISQ})^{-}$ and MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
1.4045	882	0.043	$\begin{array}{l} \alpha \text{-H-1[}\sim62\%\text{L}] \rightarrow \\ \alpha \text{-L[}\sim62\%\text{L}] (12\%) \end{array}$	Intra-ligand CT in (L ^{ISQ})
			$\beta-\text{H-1[}\sim76\%\text{L}] \rightarrow \beta-\text{L[}\sim96\%\text{L}] (64\%)$	Combination of CT in $(L^{ISQ})^{-}$ with appreciable amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
2.0140	615	0.1287	α -H-2[~57%L] → α -L[~62%L] (13%)	Intra-ligand CT in $(L^{ISQ})^{\leftarrow}$ involving Ru center with appreciable amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{\leftarrow}$
			β -H-3[~51%M] \rightarrow β -L[~96%L] (39%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
			β-H-2[~48%M] → β-L+1[~80%L] (20%) β-H-1[~76%L] → β-L[~96%L] (17%)	MLCT involving $\text{Ru} \rightarrow (L^{\text{ISQ}})^{-}$ Combination of CT in $(L^{\text{ISQ}})^{-}$, along with appreciable amount of MLCT involving $\text{Ru} \rightarrow (L^{\text{ISQ}})^{-}$

2.2078	561	0.041	$\begin{array}{l} \alpha \text{-H-4[}\sim62\%\text{L}] \rightarrow \\ \alpha \text{-L[}\sim62\%\text{L}] (12\%) \end{array}$	Intra-ligand CT in $(L^{ISQ})^{-}$, along with small amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{}$
			$\begin{array}{l} \alpha \text{-H-3[}\sim62\%\text{L}] \rightarrow \\ \alpha \text{-L[}\sim62\%\text{L}] (13\%) \end{array}$	Intra-ligand CT in (L ^{ISQ})
			β-H-4[~70%L] → β-L+1[~80%L] (55%)	Intra-ligand CT in $(L^{ISQ})^{-}$, along with small amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
2.3353	530	0.047	β-H-2[~48%M] → β-L+1[~80%L] (35%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
			β-H-1[~76%L] → β-L+1 [~80%L] (22%)	Intra-ligand CT in $(L^{ISQ})^{-}$, along with small amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
2.3509	527	0.055	β-H-9[~96%L] → β-L[~96%L] (30%)	Intra-ligand CT in (L ^{ISQ})
			$\beta\text{-H-5}[\sim80\%\text{L}] \rightarrow \beta\text{-L}[\sim96\%\text{L}] (36\%)$	Intra-ligand CT from phenyl-imino- thioether to (L ^{ISQ})
2.4461	506	0.026		Intra-ligand CT in $(L^{ISQ})^{-}$ and MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
			β-H-10[~84%L] → β-L[~96%L] (18%)	Intra-ligand CT involving phenyl- imino-thioether moiety $\rightarrow (L^{ISQ})^{-}$ with minor contribution of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
			β -H-8[~73%L] \rightarrow β -L[~96%L] (26%)	CT from phenyl ring appended to thioether $\rightarrow (L^{ISQ})^{-}$ and minor MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$ CT from phenyl ring appended to
				thioether \rightarrow (L ^{ISQ}) ⁻ and minor
			β -H-7[~80%L] → β -L[~96%L] (14%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
----------	-----	-------	--	---
-2.5.426	407	0.022		
2.5426	487	0.032	$\beta \text{-H-9[~96\%L]} \rightarrow \beta \text{-L[~96\%L]} (12\%)$	Intraligand CT in (L ^{15Q}) ^{••}
			β-H-4[~70%L] → β-L+1[~54%L] (14%)	Intraligand CT in $(L^{ISQ})^{-}$, along with small amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
			β-H-3[~51%M] → β-L+1[~80%L] (24%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
			β-H-1[~76%L] → β-L[~96%L] (20%)	Combination of CT in $(L^{ISQ})^{-}$ with appreciable amount of MLCT involving Ru $\rightarrow (L^{ISQ})^{-}$
2.5507	486	0.051	β-H-9[~96%L] → β-L[~96%L] (18%)	Intra-ligand CT in (L ^{ISQ})
			$ \begin{array}{l} \beta \text{-H-5}[\sim 80\% \text{L}] \rightarrow \\ \beta \text{-L}[\sim 96\% \text{L}] \ (26\%) \end{array} $	Intra-ligand CT from phenyl- imino-thioether to (L ^{ISQ})
			β -H-3[~51%M] \rightarrow β -L+1[~80%L] (20%)	MLCT involving $Ru \rightarrow (L^{ISQ})^{-}$
2.8318	437	0.03	$\begin{array}{c} \alpha \text{-H-9[}\sim 60\%\text{L}\text{]} \rightarrow \\ \alpha \text{-L[}\sim 63\%\text{L}\text{]} (37\%) \end{array}$	CT from phenyl ring appended to thioether $\rightarrow (L^{ISQ})^{\bullet-}$ and appreciable MLCT involving Ru $\rightarrow (L^{ISQ})^{\bullet-}$
			α-H-7[~97%L] → α-L[~63%L] (10%)	CT from phenyl ring appended to thioether $\rightarrow (L^{ISQ})^{-}$ and LMCT involving phenyl ring appended to thioether $\rightarrow Ru$
			$\begin{array}{l} \alpha \text{-H-5[} \sim 78\% \text{L]} \rightarrow \\ \alpha \text{-L[} \sim 63\% \text{L]} (11\%) \end{array}$	Intra-ligand CT involving (L ^{ISQ}) ^{•–} - imino-thioether appended phenyl

ring → $(L^{ISQ})^{-}$ and LMCT involving $(L^{ISQ})^{-}$ -imino-thioether appended phenyl ring → Ru

Excitation energy (eV)	λ (nm)	F	Transition	Assignment
1.1920	1040	0.0237	$\begin{array}{l} \alpha/\beta \text{-H}[\sim74\%\text{L}] \rightarrow \\ \alpha/\beta \text{-L}[\sim96\%\text{L}] \\ (44\%) \end{array}$	Intra-ligand CT within (L ^{IBQ}) ⁰ ring along with minor contribution of MLCT involving Ru to (L ^{IBQ}) ⁰ ring
1.5365	806	0.0459	$\alpha /\beta -H-7[\sim 66\% L]$ $\rightarrow \alpha /\beta -L[\sim 96\% L]$ (18%) $\alpha /\beta -H-1[\sim 89\% L] \rightarrow \alpha /\beta -L[\sim 96\% L]$ (25%)	Intra-ligand CT from aminothioether moity to (L ^{IBQ}) ⁰ ring, with significant contribution of MLCT involving Ru to (L ^{IBQ}) ⁰ Intra-ligand CT within (L ^{IBQ}) ⁰ ring
1.6797	738	0.0483	$\begin{array}{l} \alpha /\beta - \mathrm{H}[\sim 74\% \mathrm{L}] \rightarrow \\ \alpha /\beta - \mathrm{L} + 1[\sim 75\% \mathrm{L}] \\ (29\%) \end{array}$	Intra-ligand CT within (L ^{IBQ}) ⁰ ring

Table S18 TD-DFT-calculated electronic transitions of $[1^{OX2}]^{2+}$, using CAM-B3LYP

1.8546	668	0.01520	α/β-H-6[~64%L]	Intra-liand CT within (L ^{IBQ}) ⁰ with
			\rightarrow	significant contribution of MLCT
			α/β-L[~96%L]	involving Ru to (L ^{IBQ}) ⁰ ring
			(20%)	CT from appended phenyl ring to
			α/β-H-2[~66%L]	(L ^{IBQ}) ⁰ ring, along with

			\rightarrow	MLCT involving Ru to (L ^{IBQ}) ⁰
			α/β-L[~96%L]	ring
			(11%)	
2.0458	606	0.1133	$\alpha/\beta - \text{H-7}[\sim 66\%\text{L}] \rightarrow \alpha/\beta - \text{L+1}[\sim 75\%\text{L}] (15\%)$	Intra-ligand CT to $(L^{IBQ})^0$ ring from phenyl aminothioether moiety with MLCT involving Ru $\rightarrow (L^{IBQ})^0$ ring
			$\begin{array}{l} \alpha/\beta - \text{H-1}[\sim 89\%\text{L}] \rightarrow \\ \alpha/\beta - \text{L+1}[\sim 75\%\text{L}] \\ (10\%) \end{array}$	Intra-ligand CT within $(L^{IBQ})^0$ ring with small contribution of LMCT involving $(L^{IBQ})^0$ ring \rightarrow Ru
2.2110	560	0.1080	$\begin{array}{c} \alpha/\beta - \text{H-8}[\sim 53\%\text{L}] \rightarrow \\ \alpha/\beta - \text{L}[\sim 96\%\text{L}] \\ (11\%) \\ \alpha/\beta - \text{H-6}[\sim 64\%\text{L}] \rightarrow \\ \alpha/\beta - \text{L}[\sim 96\%\text{L}] \\ (13\%) \end{array}$	CT within (L ^{IBQ}) ⁰ with significant contribution of MLCT involving Ru to (L ^{IBQ}) ⁰ ring Intra-liand CT within (L ^{IBQ}) ⁰ with significant contribution of MLCT involving Ru to (L ^{IBQ}) ⁰
2.5851	479	0.1053	$\begin{array}{c} \alpha/\beta - \text{H-9}[\sim95\%\text{L}] \rightarrow \\ \alpha/\beta - \text{L}[\sim96\%\text{L}] \\ (20\%) \end{array}$	Intra-ligand CT in phenyl-(L ^{IBQ}) ⁰ ring from phenylaminothioether moiety
2.7462	451	0.1773	$\alpha/\beta - \text{H-10}[\sim 87\%\text{L}]$ \rightarrow $\alpha/\beta - \text{I} [\sim 96\%\text{I}]$	Intra-ligand CT within (L ^{IBQ}) ⁰
			$\alpha \beta^{-} E[-90.02]$ (7%) $\alpha \beta^{-} H-8[\sim 53\% L] \rightarrow \alpha \beta^{-} L[\sim 96\% L]$ (9%)	CT within $(L^{IBQ})^0$ with significant contribution of MLCT involving Ru to $(L^{IBQ})^0$ ring
			$\alpha /\beta -H-2[\sim 66\% L]$ \rightarrow $\alpha /\beta -L[\sim 96\% L]$ (6%)	CT from appended phenyl ring to $(L^{IBQ})^0$ ring along with MLCT involving Ru to $(L^{IBQ})^0$
2.8125	440	0.1686	$\begin{array}{l} \alpha/\beta - \text{H-9}[\sim95\%\text{L}] \rightarrow \\ \alpha/\beta - \text{L}[\sim96\%\text{L}] \\ (20\%) \end{array}$	Intra-ligand CT in phenyl-(L ^{IBQ}) ⁰ from phenylaminothioether moiety

Excitation	λ	f	Transition	Assignment
energy	(nm)	0		C
(eV)				
		0.00(
1.1149	1112	0.0265	$H[\sim 62\%L] \rightarrow$	Intra-ligand CT in $(L^{IBQ})^0$ along
			L[~95/0L] (95/0)	with MLC1 involving $Ku \rightarrow (LBO)0$
				(L ^m ²) ⁰
1.5706	789	0.038	H−1[~68%L] →	Intra-ligand CT in (L ^{IBQ}) ⁰ along
			L[~95%L] (10%)	with MLCT involving $Ru \rightarrow (L^{IBQ})^0$
			$\text{H}[{\sim}62\%\text{L}] \rightarrow$	Combination of inter lines I OT in
			$L+1[\sim 76\% L] (76\%)$	Combination of intra-figand C1 in $(I^{IBQ})^0$ and MI CT involving Ru \rightarrow
				$(L^{IBQ})^0$
1.7779	697	0.053	H-4[~70%L] →	Intra-ligand CT towards (L ^{IBQ}) ⁰
			L[~95%L] (12%)	ring from appended phenyl ring of
				thioether molety, along with MLC1 involving $Ru \rightarrow (L^{IBQ})^0$
			H-3[~79%L] →	Intra-ligand CT from amino
			L[~95%L] (48%)	thioether moiety to (L ^{IBQ}) ⁰ along
				with MLCT involving $Ru \rightarrow (IBO)^0$
				$(\Gamma_{-},)$
				Intra-ligand CT in (L ^{IBQ}) ⁰ along
			H-1[~68%L] →	with MLCT involving $Ru \rightarrow (T BO)^0$
			L[~95%L] (25%)	$(\Gamma_{res})_{r}$
2.0601	601	0.087	H-7[~72%L] →	Combination of intra-ligand CT
			L[~95%L] (70%)	within $(L^{IBQ})^0$ and MLCT involving $Ru \rightarrow (L^{IBQ})^0$
			H 5[-040/1]	Combination of inter- and intra-
			$\Pi - 3[\sim 94\% L] \rightarrow L[\sim 95\% L] (19\%)$	ligand CT towards (L ^{IBQ}) ⁰ ring
				from appended phenyl ring of
				thioether moiety
2.2010	563	0.138	H-8[~52%M] →	MLCT involving $Ru \rightarrow (L^{IBQ})^0$ and
			L[~95%L] (79%)	intra-ligand CT in $(L^{IBQ})^0$

Table S19 TD-DFT-calculated electronic transitions of $[1^{OX2}]^{2+}$, using B3LYP

2.3038	538	0.069	H-4[~70%L] → L+1[~76%L] (15%)	Intra-ligand CT towards (L ^{IBQ}) ⁰ from appended phenyl ring of thioether moiety
			H-3[~79%L] → L+1[~76%L] (35%)	Intra-ligand CT in (L ^{IBQ}) ⁰
			H-1[~68%L] → L+1[~76%L] (31%)	Intra-ligand CT in $(L^{IBQ})^0$ and MLCT involving $Ru \rightarrow (L^{IBQ})^0$
2.6563	466	0.112	H-11[~91%L] → L[~95%L] (28%)	Intra-ligand CT from amino thioether to $(L^{IBQ})^0$
			H-9[~96%L] → L[~95%L] (21%)	Intra-ligand CT in (L ^{IBQ}) ⁰
			$H-7[\sim72\%L] →$ L+1[~76%L] (38%)	Intra-ligand CT in $(L^{IBQ})^0$ and MLCT involving $Ru \rightarrow (L^{IBQ})^0$
2.7292	454	0.0388	H-12[~83%L] → L[~95%L] (71%)	Intra-ligand CT in (L ^{IBQ}) ⁰
2.7671	448	0.087	$H-8[\sim 52\%M] \rightarrow$ L+1[∼76%L] (47%)	MLCT involving $Ru \rightarrow (L^{IBQ})^0$ and intra-ligand CT in $(L^{IBQ})^0$
			H-7[~72%L] → L+1[~76%L] (27%)	Intra-ligand CT in $(L^{IBQ})^0$ and MLCT involving $Ru \rightarrow (L^{IBQ})^0$
			H-11[~91%L] → L[~95%L] (9%)	Intra-ligand CT from amino thioether to $(L^{IBQ})^0$
3.2867	374	0.0827	$H-12[\sim82\%L] \rightarrow$ L+1[~76%L] (75%)	Intra-ligand CT from amino thioether to $(L^{IBQ})^0$