Supplement of

A Review of Aerosol Chemistry in Asia: Insights from Aerosol Mass Spectrometer Measurements

Wei Zhou^{1,2}, Weiqi Xu¹, Hwajin Kim³, Qi Zhang⁴, Pingqing Fu⁵, Douglas R. Worsnop⁶, Yele Sun^{1,2,7}

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China

²College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China

³Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul, South Korea

⁴Department of Environmental Toxicology, University of California, Davis, CA 95616, USA

⁵Institute of Surface-Earth System Science, Tianjin University, 300072 Tianjin, China ⁶Aerodyne Research, Inc., Billerica, MA 01821, USA

⁷Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China

Correspondence to: Yele Sun (sunyele@mail.iap.ac.cn)

Area	Site	Site type	Sampling site	AMS Type	Year	Sampling period	References
Tibet	Menyuan	background	an air-conditioned room on Daban Mountain in Menyuan,	Q-ACSM	2013 Fall	Sep-Oct, 2013	(Du et al.,
			Qinghai province~3295m, 15min resolution with 6 cycles				2015) ¹
Tibet	Nam Co	background	A trailer in Nam Co observatory station~4730m, only V	HR-AMS	2015 Summer	May-Jul, 2015	(Xu et al.,
			mode no size distribution, 5min resolution				2018) ²
Tibet	Qomolangma	background	An air-conditioned room at Qomolangma station ~4276m,	HR-AMS	2016 Spring	Apr-May, 2016	(Zhang et al.,
			V mode (6s MS+9s PToF)				2018) ³
Tibet	Waliguan	background	A two-story building at Waliguan observatory station	HR-AMS	2017 Summer	Jul 2017	(Zhang et al.,
			~3816m, 5min V mode (15s MS+15s PToF)+5min W				2019) ⁴
			mode				
Tibet	Mt. Yulong	background	Mt. Yulong, Yunnan province~3410m, 2.5min V mode	HR-AMS	2015 Spring	Mar-Apr, 2015	(Zheng et al.,
			(MS)+2.5 min W mode				2017)5
Hainan	Mt. Wuzhi	background	an air-conditioned room at Mt. Wuzhi~958m, 2min V	HR-AMS	2015 Spring	Mar-Apr, 2015	(Zhu et al.,
			mode (20s MS+100s PToF)+2min W mode				2016)6
NCP	Mt. Tai	background	Mt. Tai~1534m, only V mode no size distribution, 5min	Q-AMS	Four season	Jun 2010-Jan 2012	(Zhang et al.,
			resolution				2014)7
YRD	Shanghai	urban	a 6-floor building of Shanghai Pudong Environmental	HR-AMS	2010 Summer	May-Jun, 2010	(Huang et al.,
			Monitoring Station, 2min V mode (90s WS+30s PToF) +				2012)8
			2min W mode				
YRD	Shanghai	urban	A nine-floor building at Shanghai Academy of	HR-AMS	2016 Winter	Nov 2016-Jan 2017	(Zhu et al.,
			Environmental Sciences, 4min V mode (MS+PToF)				2018) ⁹
YRD	Nanjing	urban	Campus of Nanjing University of Information Science and	SP-AMS	2015 Spring	Feb-Mar, 2015	(Wang et al.,
			Technology, 2.5min laser on V mode, 2.5min laser off V				2016)10
			mode, 2.5min laser on W mode, 2.5min laser off W mode,				
			2.5min laser on PToF mode, 2.5min laser off PToF mode				
YRD	Nanjing	urban	A five-floor building in the environment monitoring station	SP-AMS	2015 Spring	Apr 2015	(Wang et al.,
			of Nanjing Olympic center~12m, 2.5min laser on V mode,				2016)11
			2.5min laser off V mode, 2.5min laser on W mode, 2.5min				
			laser off W mode, 2.5min laser on PToF mode, 2.5min				
			laser off PToF mode				
YRD	Nanjing	urban	A six-floor building in the Jiangsu Environment	Q-ACSM	2013 Winter	Dec 2013	(Zhang et al.,
			Monitoring Center				2015) ¹²
YRD	Hangzhou	urban	an 8-floor building at Binjiang national air quality	HR-AMS	2016 Summer	Aug-Sep, 2016	(Li et al.,
			monitoring station, Hangzhou, 5min V mode (10s				2018)13
			MS+10s+PToF)+5min W mode				
YRD	Jiaxing	suburban	a 4-floor building in a village school in Jiaxing, 2min V	HR-AMS	2010 Summer	Jun-Jul, 2010	(Huang et al.,
			mode (20s MS+100s PToF)+2min W mode		2010 Winter	Dec 2010	2013)14
YRD	Lake Hongze	rural	Lake Hongze, 2min V mode (20s MS+100s PToF)+2min	HR-AMS	2011 Spring	Mar-Apr, 2011	(Zhu et al.,
			W mode				2016)6
YRD	Lin'an	background	Lin'an Regional Atmosphere Background Station	Q-AMS	2013 Spring	Mar 2013	(Zhang et al.,
							2015)15
YRD	Lin'an	background	Lin'an regional background station	Q-AMS	2013 Winter	Nov-Dec, 2013	(Zhang et al.,

Table S1. Summary of sampling sites and sampling informations for AMS measurements in Asia.

							2015)16
PRD	Shenzhen	urban	4th floor, Building E, Shenzhen Graduate School of Peking	HR-AMS	2008 Winter	Jan-Feb, 2009	(Yao et al.,
			University				2010)17
PRD	Shenzhen	urban	on the campus of Shenzhen Graduate School, Peking	HR-AMS	2008 Winter	Jan-Feb, 2009	(Huang et al.,
			University				2010)18
PRD	Shenzhen	urban	on the campus of Shenzhen Graduate School, Peking	HR-AMS	2009 Fall	Oct-Dec, 2009	(He et al.,
			University, 2 min V mode (MS), 2 min W mode, two 2 min				2011)19
			PToF modes, 2 min Soft-EI mode using a lower EI voltage				
			(~13 eV).				
PRD	Shenzhen	urban	on the campus of Shenzhen Graduate School, Peking	HR-AMS	2014 Winter	Dec 2014-Jan 2015	(Cao et al.,
			University, V mode (MS+PToF)+W mode				2018) ²⁰
PRD	Dongguan	urban	Dongguan	HR-AMS	2013 Winter	Dec 2013-Jan 2014	(Lan et al.,
							2018) ²¹
PRD	Heshan	urban	2min V mode (20s MS+100s PToF)+2min W mode	HR-AMS	2010 Fall	Nov-Dec, 2010	(Gong et al.,
		outflow					2012)22
PRD	HongKong	urban	Mong Kok in urban Hongkong	Q-ACSM	2013 Fall	Sep-Dec, 2013	(Sun et al.,
							2016) ²³
PRD	Backgarden	rural	a 3 story building at Backgarden at~50km northwest of the	Q-AMS	2006 Summer	July 2006	(Xiao et al.,
			center of the Guangzhou city				2011) ²⁴
PRD	Kaiping	rural	an air monitoring container settled at the Kaiping supersite,	HR-AMS	2008 Fall	Oct-Nov, 2008	(Huang et al.,
			2 min V-mode of MS, 2 min W-mode, 4 min separate PToF				2011) ²⁵
			mode under V-mode, 2 min Soft-EI mode using a lower EI				
			voltage (~13 eV)				
PRD	Panyu	suburban	Guangzhou Panyu Atmospheric Composition	HR-AMS	2014 Winter	Nov 2014-Jan 2015	(Qin et al.,
			Station~150m, 5min V mode(MS+PToF)+5min W mode				2017) ²⁶
PRD	HongKong	suburban	Hong Kong University of Science and Technology	HR-AMS	Four season	Apr 2011-Mar 2012	(Li et al.,
			Supersite				2015)27
PRD	HongKong	suburban	Hong Kong University of Science and Technology	HR-AMS	2016 Fall	Oct 2016	(Li et al.,
			(HKUST) Supersite, 2min V mode+2min W mode				2019) ²⁸
NW	Lanzhou	urban	an air conditioned room on a seven-story academic	HR-AMS	2012 Summer	Jul-Aug, 2012	(Xu et al.,
			building in the Cold and Arid Regions Environmental and				2014) ²⁹
			Engineering Research Institute, 2.5min V mode (6s MS+9s				
			PToF)+2.5 min W mode				
NW	Lanzhou	urban	a 22-story building on the campus of Lanzhou University,	HR-AMS	2013 Winter	Jan-Feb, 2014	(Xu et al.,
			2.5min V mode (6s MS+9s PToF)+2.5 min W mode				2016)30
NW	Lanzhou	urban	on the third floor ~ 12 m in the yard of the Gansu	Q-AMS	2014 Fall	Oct-Dec, 2014	(Zhang et al.,
			Meteorological Administration, 5min (MS+PToF)				2017) ³¹
NW	Xi'an	urban	rooftop in Institute of Earth Environment, Chinese	Q-ACSM	2012 Winter	Dec 2012-Jan 2013	(Wang et al.,
			Academy of Sciences~10m				2014)32
NW	Baoji	urban	A four-story building~15m	Q-ACSM	2014 Spring	Feb-Mar, 2014	(Wang et al.,
							2017) ³³
NCP	Beijing	urban	on the campus of the Chinese Academy of Meteorological	Q-AMS	2006 Summer	July 2006	(Sun et al.,
			Sciences (CAMS), 5min (15s MS+15s PToF)				2010) ³⁴
NCP	Beijing	urban	a six-story building in the campus of Peking University	HR-AMS	2008 Summer	Jul-Sep, 2008	(Huang et al.,

			~20m, 2 min V-mode, 2 min W-mode, 4 min separate PToF				2010)35
			mode, 2 min Soft-EI mode using a lower EI voltage (~13				
			eV)				
NCP	Beijing	urban	a six-story building in the campus of Peking University	HR-AMS	2010 Fall	Nov-Dec, 2010	(Hu et al.,
			~20m, 2min V mode (MS+PToF)+2min W mode		2011 Summer	Aug-Sep, 2011	2016) ³⁶
NCP	Beijing	urban	a six-story building in the campus of Peking University	HR-AMS	Four season	Mar 2012-Mar 2013	(Hu et al.,
			~20m, 2min V mode (MS+PToF)+2min W mode				2017)37
NCP	Beijing	urban	a two-story building~8m on the campus of the State Key	HR-AMS	2012 Fall	Oct 2012	(Xu et al.,
			Laboratory of Atmospheric Boundary Layer Physics and				2018) ³⁸
			Atmospheric Chemistry, 5min V mode no size distribution				
			+5min W mode				
NCP	Beijing	urban	a two-story building~8m on the campus of the State Key	HR-AMS	2012 Winter	Jan-Feb, 2013	(Zhang et al.,
			Laboratory of Atmospheric Boundary Layer Physics and				2014) ³⁹
			Atmospheric Chemistry, 7.5min V mode (45s MS+45s				
			PToF)+7.5min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2013 Winter	Dec 2013-Jan 2014	(Sun et al.,
			Boundary Layer Physics and Atmospheric Chemistry,				2016) ⁴⁰
			2min V mode (MS+PToF)+2min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2014 Summer	Jun-Jul, 2014	(Xu et al.,
			Boundary Layer Physics and Atmospheric Chemistry,		2014 Fall	Oct-Nov, 2014	2017) ⁴¹
			5min V mode (MS+PToF) +5min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2014 Fall	Oct 2014	(Zhang et al.,
			Boundary Layer Physics and Atmospheric Chemistry,		2014 Winter	Dec 2014	2016) ⁴²
			5min V mode (10s MS+20s PToF)+5min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2014 Winter	Nov-Dec, 2014	(Xu et al.,
			Boundary Layer Physics and Atmospheric Chemistry,		2016 Winter	Nov-Dec, 2016	2019) ⁴³
			2014: 5min V mode (MS+PToF)+5min W mode, 2016:				
			2min V mode (MS+PToF)+2min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2015 Fall	Sep 2015	(Li et al.,
			Boundary Layer Physics and Atmospheric Chemistry,				2020)44
			5min V mode (10s Ms+20s PToF)+5min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2015 Fall	Aug-Sep, 2015	(Zhao et al.,
			Boundary Layer Physics and Atmospheric Chemistry,				2017)45
			5min V mode (MS+PToF)+5min W mode				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2017 Summer	Jun 2017	(Xu et al.,
			Boundary Layer Physics and Atmospheric Chemistry,		2018 Summer	May-Jun, 2018	2019) ⁴⁶
			15min bypass (every 3min V mode)+15min TD				
NCP	Beijing	urban	on the campus of the State Key Laboratory of Atmospheric	HR-AMS	2018 Winter	Nov 2018-Jan 2019	(Li et al.,
			Boundary Layer Physics and Atmospheric Chemistry,				2020)47
			3min V mode (10s Ms+20s PToF)+3min W mode				
NCP	Tianjin	urban	Tianjin, 2min (MS+PToF)	C-ToF-AMS	2010 Fall	Sep 2010	(Zhang et al.,
							2012)48
NCP	Xinxiang	urban	mobile laboratory of Nanjing University in Xinxiang,	Q-ACSM	2017 Summer	Aug 2017	(Li et al.,
			15min resolution				2018) ⁴⁹

NCP	Handan	urban	a four-story building (~12m) in Handan, 15min resolution	Q-ACSM	2015 Winter	Dec 2015-Feb 2016	(Li et al.,
							2017) ⁵⁰
NCP	Shijiazhuang	urban	on the building roof (15 m) of the Institute of Genetics and	Q-ACSM	2013 Winter	Jan-Feb, 2014	(Huang et al.,
			Developmental Biology, Chinese Academy of Sciences in				2019) ⁵¹
			Shijiazhuang, 30min resolution				
NCP	Xianghe	suburban	Xianghe Atmospheric Observatory	Q-ACSM	2013 Summer	Jun 2013	(Sun et al.,
							2016)52
NCP	Xinzhou	suburban	Xinfuqu National Meteorological Observatory in Xinzhou,	Q-ACSM	2014 Summer	Jul-Sep, 2014	(Wang et al.,
			8min resolution				2016) ⁵³
NCP	Xingtai	suburban	Xingtai National Meteorological Basic Station, 5min	Q-ACSM	2016 Spring	Apr-Jun, 2016	(Zhang et al.,
			resolution				2018)54
NCP	Liulihe	rural	a one-story sampling station in Liulihe	Q-ACSM	Four season	Oct 2014-Jan 2015	(Hua et al.,
							2018)55
NCP	Yufa	suburban	on the campus of Huang Pu University in Yufa	Q-AMS	2006 Summer	Aug-Sep, 2006	(Gunthe et
							al., 2011) ⁵⁶
NCP	Xinglong	suburban	Xinglong Atmosphere Background Observation Station	Q-AMS	2018 Winter	Nov 2018-Jan 2019	(Li et al.,
							2020)47
NCP	Changping	suburban	A four-floor building on the Changping campus of Peking	HR-AMS	2016 Summer	Jun 2016	(Li et al.,
			University, , 2min V mode+2min W mode				2019) ²⁸
NCP	Changdao	island	at an island of Changdao, 2min V mode (10s MS+10s	HR-AMS	2011 Spring	Mar-Apr, 2011	(Hu et al.,
			PToF)+2min W mode				2013)57
India	Kanpur	urban	at the Indian Institute of Technology (IIT) Kanpur, 1min V	HR-AMS	2012 Fall/Winter	Nov 2012-Jan 2013	(Chakraborty
			mode+1min W mode				et al., 2015)58
India	Kanpur	urban	at the Indian Institute of Technology (IIT) Kanpur	HR-AMS	2013 Spring	Feb-Mar, 2013	(Kumar et al.,
							2016)59
India	Kanpur	urban	At the campus of Indian Institute of Technology (IIT)	HR-AMS	2014 Winter	Dec 2014-Feb 2015	(Chakraborty
			Kanpur, switching ambient air to pass through TD to AMS				et al., 2016)58
			and directly to AMS at every 10 min interval.				
India	Kanpur	urban	at the Indian Institute of Technology (IIT) Kanpur, 2min V	HR-AMS	2015 Summer	May-Aug, 2015	(Chakraborty
			mode				et al., 2016)60
India	Kanpur	urban	at the Indian Institute of Technology (IIT) Kanpur, 2min V	HR-AMS	Fall	Sep-Oct	(Chakraborty
			mode				et al., 2018) ⁶¹
India	Ahmedabad	urban	Post-monsoon season of the year 2017 at Ahmedabad	HR-AMS	2017 Fall	Sep-Oct, 2017	(Singh et al.,
							2019)62
India	Delhi	urban	at the Indian Institute of Technology Delhi (IITD) campus	Q-ACSM	Four Season	Dec 2016-Sep 2017	(Gani et al.,
			in South Delhi				2019)63
India	Mt. Ghats	Background	A High Altitude Cloud Physics Laboratory at Mt. Ghats	ToF-ACSM	Four season	Mar 2016-Feb 2017	(Mukherjee
			~ 1378m				et al., 2018) ⁶⁴
Singap		urban	on the fourth floor of the North Spine building at Nanyang	ToF-ACSM	2015 Fall	Oct 2015	(Budisulistior
ore			Technological University (NTU), Singapore				ini et al,
							2018)65
Singap		urban	the campus of the National University of Singapore, 1 min	SP-AMS	2017 Summer	May-Jun, 2017	(Rivellini et
ore			alternating intervals between IR laser-on and laser-off				al, 2019) ⁶⁶
			mode				

Korea,	Seoul	urban	a five floor of building at the Korea Institute of Science	HR-AMS	2015 Winter	Dec 2015-Jan 2016	(Kim et al.,
			and Technology, 2.5min V mode (MS+PToF)+2.5min W				2017) ⁶⁷
			mode				
Korea	Seoul	urban	a five floor of building at the Korea Institute of Science	HR-AMS	2016 Spring	Apr-Jun, 2016	(Kim et al.,
			and Technology, 3min V mode (MS+PToF)+3min W mode				2018)68
Korea	Gwangju	urban	on the Gwangju Institute of Science and technology	Q-AMS	2011 Fall	Aug-Sep, 2011	(Park et al.,
			(GIST) campus~6m		2011 Winter	Dec 2011	2012)69
Korea	Gwangju	urban	on the Gwangju Institute of Science and technology	Q-AMS	Four season	Aug 2011-Aug 212	(Park et al.,
			(GIST) campus~6m				2013)70
Korea	Gwangju	urban	an urban Gwangju site	Q-AMS	2015 Summer	May-Jun, 2015	(Cho et al.,
							2018)71
Korea	Gwangju	urban	an urban Gwangju site, 5min V mode	Q-AMS	2013 Fall	Nov 2013	(Lee et al.,
							2017)72
Korea	Boseong	coastal	Boseong Global Standard Meteorological Observation site	Q-AMS	2012/2013 Fall	Nov2012&Nov 2013	(Lee et al.,
							2017)72
Korea	Baengnyeong	island	At Baengnyeong Island Atmospheric Research Center,	HR-AMS	2011 Summer/Fall	May-Nov, 2011	(Lee et al.,
			5min V mode				2015)73
Korea	Jeju	Island	on the western edge of Jeju island, MS+PToF mode	Q-AMS	2001 Spring	Apr 2001	(Topping et
							al., 2004) ⁷⁴
Japan	Tokyo	urban	at the Research Center for Advanced Science and	Q-AMS	Four season	Feb 2003-Feb 2004	(Takegawa et
			Technology (RCAST), Komaba				al., 2006)75
Japan	Tokyo	urban	at the Research Center for Advanced Science and	Q-AMS	2004 Summer	Jul-Aug, 2004	(Miyakawa et
			Technology (RCAST), Komaba				al., 2008) ⁷⁶
Japan	Tokyo	urban	A three-floor building in the Hongo campus of the	Q-AMS	2008 Summer	Aug 2008	(Xing et al.,
			University of Tokyo, only V mode				2011)77
Japan	Saitama	suburban	At the Center for Environmental Science in Saitama	Q-AMS	2004 Summer	Jul-Aug 2004	(Miyakawa et
							al., 2008) ⁷⁶
Japan	Okinawa	Island		Q-AMS	Four season	Oct 2003-Apr 2004	(Zhang et al.,
							2007)78
Japan	Fukue	Island	the northwest side of Fukue Island	Q-AMS	2003 Spring	Mar-Apr, 2003	(Takami et
							al., 2005)79

Area	Site	Site type	Sampling time	Instrument	NR-PM ₁	Org	SO 4	NO ₃	NH4	Chl	Reference
Tibet	Menyuan	background	Sep-Oct, 2013	Q-ACSM	10.84	4.9	3.2	1.2	1.4	0.14	(Du et al., 2015) ¹
Tibet	Nam Co	background	May-Jul, 2015	HR-AMS	1.84	1.36	0.3	0.04	0.14	0	(Xu et al., 2018) ²
Tibet	Qomolangma	background	Apr-May, 2016	HR-AMS	3.3	2.4	0.41	0.22	0.26	0.01	(Zhang et al., 2018) ³
Tibet	Waliguan	background	Jul 2017	HR-AMS	8.83	3.14	3.47	0.74	1.38	0.1	(Zhang et al., 2019) ⁴
Tibet	Mt. Yulong	background	Mar-Apr, 2015	HR-AMS	5.2	3.88	0.8	0.23	0.29	0	(Zheng et al., 2017) ⁵
Hainan	Mt. Wuzhi	background	Mar-Apr, 2015	HR-AMS	10.33	4.9	3.4	0.5	1.5	0.03	(Zhu et al., 2016) ⁶
NCP	Mt. Tai	background	Jun 2010-Jan 2012	Q-AMS	34.35	11.2	9.2	7.2	5.8	0.95	(Zhang et al., 2014) ⁷
YRD	Shanghai	urban	May-Jun 2010	HR-AMS	27.2	8.4	9.8	4.9	3.9	0.2	(Huang et al., 2012) ⁸
YRD	Shanghai	urban	Nov 2016-Jan 2017	HR-AMS	29.5	12.9	5.2	7.3	3.8	0.3	(Zhu et al., 2018) ⁹
YRD	Nanjing	urban	Feb-Mar 2015	SP-AMS	43.5	11.8	10.8	11.2	7.8	1.9	(Wang et al., 2016) ¹⁰
YRD	Nanjing	urban	Apr 2015	SP-AMS	25.5	12.7	5.5	3.8	3.1	0.4	(Wang et al., 2016) ¹¹
YRD	Nanjing	urban	Dec 2013	Q-ACSM	89.2	38.4	14.3	22.3	12.5	2.7	(Zhang et al., 2015) ¹²
YRD	Hangzhou	urban	Aug 2016	HR-AMS	26.5	17	4.6	2.1	2.7	0.1	(Li et al., 2018) ¹³
			Aug-Sep 2016		28.7	13.7	8.2	2.2	4.5	0.1	
			Sep 2016		39.8	18.5	6.7	8.7	5.5	0.4	
YRD	Jiaxing	suburban	Jun-Jul, 2010	HR-AMS	29.9	10.6	8.3	5.9	4.1	1	(Huang et al., 2013) ¹⁴
			Dec 2010		34.9	12.7	7.1	7.5	4.9	2.7	
YRD	Lake Hongze	rural	Mar-Apr, 2011	HR-AMS	32.7	9.8	7.7	9.4	5.5	0.3	(Zhu et al., 2016) ⁶
YRD	Lin'an	background	Mar 2013	Q-AMS	43.6	17.7	8.1	9.8	6.9	1.1	(Zhang et al., 2015) ¹⁵
YRD	Lin'an	background	Nov-Dec, 2013	Q-AMS	62.8	29	10	15	7.7	1.1	(Zhang et al., 2015) ¹⁶
PRD	Shenzhen	urban	Jan-Feb, 2009	HR-AMS	56.4	27	13	7.3	7.7	1.4	(Yao et al., 2010) ¹⁷
PRD	Shenzhen	urban	Jan-Feb, 2009	HR-AMS	57.3	29.4	12.5	7.6	6.7	1.1	(Huang et al., 2010) ¹⁸
PRD	Shenzhen	urban	Oct-Dec, 2009	HR-AMS	38.3	17.7	10.9	4.5	4.5	0.7	(He et al., 2011) ¹⁹
PRD	Shenzhen	urban	Dec 2014-Jan 2015	HR-AMS	37.5	18.4	9.1	4.9	4.4	0.7	(Cao et al., 2018) ²⁰
PRD	Dongguan	urban	Dec 2013-Jan 2014	HR-AMS	52.1	23.2	13.2	8	6.5	1.2	(Lan et al., 2018) ²¹
PRD	Heshan	urban	Nov-Dec, 2010	HR-AMS	39.7	17.4	10	6.2	4.6	1.5	(Gong et al., 2012) ²²
		outflow									
PRD	HongKong	urban	Sep-Dec, 2013	Q-ACSM	25.9	15.1	6	1.7	3	0.1	(Sun et al., 2016) ²³
PRD	Backgarden	rural	July 2006	Q-AMS	37.7	16.1	12.8	1.8	6.1	1.9	(Xiao et al., 2011) ²⁴
PRD	Kaiping	rural	Oct-Nov, 2008	HR-AMS	30.8	11.2	11.1	3.5	4.6	0.4	(Huang et al., 2011) ²⁵
PRD	Panyu	suburban	Nov 2014-Jan 2015	HR-AMS	50.8	25.7	12.8	6.2	5	1.1	(Qin et al., 2017) ²⁶
PRD	HongKong	suburban	Apr-Jun, 2011	HR-AMS	14.32	4	7.4	0.6	2.3	0.02	(Li et al., 2015) ²⁷
			Sep 2011		15.61	4.1	8.7	0.4	2.4	0.01	
			Oct-Dec, 2011		15.92	6	7.1	0.7	2.1	0.02	
			Jan-Mar, 2012		15.43	5.1	6.2	1.6	2.4	0.13	
PRD	HongKong	suburban	Oct 2016	HR-AMS	16.24	7.3	6.1	0.6	2.2	0.04	(Li et al., 2019) ²⁸
NW	Lanzhou	urban	Jul-Aug, 2012	HR-AMS	21.6	11.5	3.9	2.5	2.7	1	(Xu et al., 2014) ²⁹
NW	Lanzhou	urban	Jan-Feb, 2014	HR-AMS	53.6	29.3	7.2	9.5	5.9	1.7	(Xu et al., 2016) ³⁰
NW	Lanzhou	urban	Oct-Dec, 2014	Q-AMS	37.3	18.2	6.1	5.7	5	2.3	(Zhang et al., 2017) ³¹

Table S2. Summary of sampling sites and mass concentrations of NR-PM₁ species for AMS measurements in Asia.

								-	-	-	
NW	Xi'an	urban	Dec 2012-Jan 2013	Q-ACSM	134.5	78.3	18.3	13.6	16.7	7.6	(Wang et al., 2014) ³²
NW	Baoji	urban	Feb-Mar, 2014	Q-ACSM	54	29.7	8.6	8.1	5.9	1.7	(Wang et al., 2017) ³³
NCP	Beijing	urban	July 2006	Q-AMS	80	28.1	20.3	17.3	13.1	1.1	(Sun et al., 2010) ³⁴
NCP	Beijing	urban	Jul-Sep, 2008	HR-AMS	61.3	23.9	16.8	10	10	0.6	(Huang et al., 2010) ³⁵
NCP	Beijing	urban	Nov-Dec, 2010	HR-AMS	63.5	34.5	8.7	6.8	7.7	5.8	(Hu et al., 2016) ³⁶
			Aug-Sep, 2011		79.9	26.4	22	16.8	13.7	1	
NCP	Beijing	urban	Mar-May, 2012	HR-AMS	42	14	9.3	10.2	7.3	1.2	(Hu et al., 2017) ³⁷
			Jul-Aug, 2012		34.4	12.5	9.7	6.4	5.4	0.4	
			Oct-Nov, 2012		38.1	18.2	5.5	7.9	4.5	2	
			Jan-Mar, 2013		77.8	29.7	17.4	16.2	11.7	2.8	
NCP	Beijing	urban	Oct 2012	HR-AMS	56.4	28.8	8.5	11.3	6.2	1.6	(Xu et al., 2018) ³⁸
NCP	Beijing	urban	Jan-Feb, 2013	HR-AMS	89.3	44.7	19.6	12.5	8.9	3.6	(Zhang et al., 2014) ³⁹
NCP	Beijing	urban	Dec 2013-Jan 2014	HR-AMS	64	38.4	9.6	7	5.1	3.9	(Sun et al., 2016) ⁴⁰
NCP	Beijing	urban	Jun-Jul, 2014	HR-AMS	40.6	18.7	9.8	6.5	5.2	0.4	(Xu et al., 2017) ⁴¹
			Oct-Nov, 2014		54	29.4	9.1	7.8	2.9	4.8	
NCP	Beijing	urban	Oct 2014	HR-AMS	74.2	34.6	11.5	16.5	9.1	2.5	(Zhang et al., 2016) ⁴²
			Dec 2014		34.2	20.3	6.8	3.3	2.3	1.5	
NCP	Beijing	urban	Nov-Dec, 2014	HR-AMS	60.5	30.4	10.4	7.8	6.2	5.7	(Xu et al., 2019) ⁴³
			Nov-Dec, 2016		86.2	36.4	15.5	18.1	9.5	6.7	
NCP	Beijing	urban	Sep 2015	HR-AMS	43.4	20	8.9	9.2	4.7	0.6	(Li et al., 2020) ⁴⁴
NCP	Beijing	urban	Aug-Sep, 2015	HR-AMS	35.4	16	7.4	7.2	4.4	0.4	(Zhao et al., 2017) ⁴⁵
NCP	Beijing	urban	Jun 2017	HR-AMS	21	9.9	4.1	4.2	2.6	0.2	(Xu et al., 2019) ⁴⁶
			May-Jun, 2018		31.1	12.7	6.5	7.4	4.3	0.2	
NCP	Beijing	urban	Nov 2018-Jan 2019	HR-AMS	26.8	11.5	3.2	8.2	3.5	0.4	(Li et al., 2020) ⁴⁷
NCP	Tianjin	urban	Sep 2010	C-ToF-AMS	66	15.7	14.4	16.2	13.6	6.1	(Zhang et al., 2012) ⁴⁸
NCP	Xinxiang	urban	Aug 2017	Q-ACSM	61.7	18	14.4	16.5	12.2	0.6	(Li et al., 2018) ⁴⁹
NCP	Handan	urban	Dec 2015-Feb 2016	Q-ACSM	178	83.3	28.4	26.5	22.7	17.1	(Li et al., 2017) ⁵⁰
NCP	Shijiazhuang	urban	Jan-Feb, 2014	Q-ACSM	178	89	37.4	21.4	19.6	10.6	(Huang et al., 2019) ⁵¹
NCP	Xianghe	suburban	Jun 2013	Q-ACSM	67.3	28.3	12.8	14.3	8.8	3.1	(Sun et al., 2016) ⁵²
NCP	Xinzhou	suburban	Jul-Sep, 2014	Q-ACSM	33	11.7	11.5	5.1	4.2	0.5	(Wang et al., 2016) ⁵³
NCP	Xingtai	suburban	Apr-Jun, 2016	Q-ACSM	27.4	11.4	7.7	4.3	3.1	0.9	(Zhang et al., 2018) ⁵⁴
NCP	Liulihe	rural	Oct-Nov, 2014	Q-ACSM	53	30	4.3	11.2	5.9	1.6	(Hua et al., 2018) ⁵⁵
			Mar-Apr, 2015		31	16	2.5	7	4.9	0.6	
			Aug-Sep, 2015		24	13.9	3.3	2.8	3.8	0.2	
			Dec-Jan, 2015		122	70.8	13.4	15.9	20.7	1.2	
NCP	Yufa	suburban	Aug-Sep, 2006	Q-AMS	26.4	10.8	8.2	2.9	4.1	0.4	(Gunthe et al.,
											2011) ⁵⁶
NCP	Xinglong	suburban	Nov2018-Jan2019	Q-AMS	15.9	5.4	1.9	5.6	2.6	0.4	(Li et al., 2020) ⁴⁷
NCP	Changping	suburban	Jun 2016	HR-AMS	14.17	8	2.8	1.8	1.5	0.07	(Li et al., 2019) ²⁸
NCP	Changdao	island	Mar-Apr, 2011	HR-AMS	41.7	13.4	8.3	12.2	6.5	1.3	(Hu et al., 2013) ⁵⁷
India	Kanpur	urban	Nov 2012	HR-AMS	100	72	10	10	6	2	(Chakraborty et al.,
			Dec 2012-Jan 2013		139	93	14	15	14	3	2015)58
India	Kanpur	urban	Feb-Mar, 2013	HR-AMS	51	32	7	6	5	1	(Kumar et al.,

											2016) ⁵⁹
India	Kanpur	urban	Dec 2014-Feb 2015	HR-AMS	143.1	82	16.3	20.7	18.5	5.6	(Chakraborty et al.,
											2016)58
India	Kanpur	urban	May-Aug, 2015	HR-AMS	9.7	6	2.1	0.4	1.2	0	(Chakraborty et al.,
											2016) ⁶⁰
India	Kanpur	urban	Sep-Oct	HR-AMS	44	25.2	11	3.1	4.4	0.3	(Chakraborty et al.,
											2018) ⁶¹
India	Ahmedabad	urban	Sep-Oct, 2017	HR-AMS	15.4	9	4.3	1.5	0.4	0.2	(Singh et al., 2019) ⁶²
India	Delhi	urban	Dec 2016-Feb 2017	Q-ACSM	195	112	16	24	20	23	(Gani et al., 2019) ⁶³
			Feb-Mar, 2017		99.5	61	10	9	10	9.5	
			Apr-Jun, 2017		55.5	35	10	3.8	5.2	1.5	
			Jul-Sep, 2017		41.6	23	10	3.6	4.6	0.4	
India	Mt. Ghats	Background	Mar-May, 2016	ToF-ACSM	10.29	6.25	2.39	0.56	0.97	0.12	(Mukherjee et al.,
			Jun-Sep, 2016		2.5	1.5	0.39	0.07	0.45	0.09	2018)64
			Oct-Nov, 2016		4.69	2.6	1.1	0.33	0.61	0.05	
			Dec 2016-Feb 2017		12.38	7.02	3	0.96	1.28	0.11	
Singapore		urban	Oct 2015	ToF-ACSM	49.8	39.2	5.6	2.1	2.6	0.3	(Budisulistiorini et
											al, 2018)65
Singapore		urban	May-Jun, 2017	SP-AMS	9.89	5.59	3.29	0.11	0.85	0.05	(Rivellini et al,
											2019)66
Korea	Seoul	urban	Dec 2015-Jan 2016	HR-AMS	24.9	12.1	2.87	6.55	3.11	0.26	(Kim et al., 2017) ⁶⁷
Korea	Seoul	urban	Apr-Jun, 2016	HR-AMS	20.6	9.7	4.4	3.8	2.7	0	(Kim et al., 2018) ⁶⁸
Korea	Gwangju	urban	Aug-Sep, 2011	Q-AMS	8.23	4.7	1.75	0.62	1.07	0.09	(Park et al., 2012) ⁶⁹
			Dec 2011		12.76	6.31	1.9	2.45	1.7	0.4	
Korea	Gwangju	urban	Aug-Sep, 2011	Q-AMS	6.96	3.96	1.81	0.32	0.85	0.02	(Park et al., 2013) ⁷⁰
			Dec 2011		12.03	5.42	1.93	2.17	2.2	0.31	
			May 2012		7.51	3.28	2.58	0.61	0.99	0.05	
			Jul-Aug, 2012		8.66	4.9	2.41	0.37	0.92	0.06	
Korea	Gwangju	urban	May-Jun, 2015	Q-AMS	19.6	9.1	4.7	3.2	2.6	0	(Cho et al., 2018) ⁷¹
Korea	Gwangju	urban	Nov 2013	Q-AMS	8.66	3.58	2.01	1.42	1.34	0.31	(Lee et al., 2017) ⁷²
Korea	Boseong	coastal	Nov 2012, Nov 2013	Q-AMS	2.05	0.84	0.72	0.23	0.21	0.05	(Lee et al., 2017) ⁷²
Korea	Baengnyeong	island	May 2011	HR-AMS		2.47	5.3	0.79	1.66		(Lee et al., 2015) ⁷³
			Jun 2011			2.11	4.43	0.62	1.21		
			Jul 2011			1.36	2.58	0.51	0.86		
			Aug 2011			1.62	2.74	0.32	0.85		
			Sep 2011			3.56	7.24	0.72	1.72		
			Oct 2011			5.84	5.04	1.47	1.66		
			Nov 2011			5.36	5.27	2.32	1.9		
Korea	Jeju	Island	Apr 2001	Q-AMS	8.61	3.5	3.1	0.51	1.5	0	(Topping et al.,
											2004) ⁷⁴
Japan	Tokyo	urban	Feb 2003	Q-AMS	15.3	6.7	2.5	3.1	2.2	0.5	(Takegawa et al.,
			Jul-Aug, 2003		12.7	5.7	3.2	1	1.8	0.09	2006)75
			Sep-Oct, 2003		11.9	7.1	1.8	1	1.3	0.1	
			Jan-Feb, 2004		14.0	5.8	1.7	2.8	2.3	0.5	

Japan	Tokyo	urban	Jul-Aug, 2004	Q-AMS	7.8	3.7	2.6	0.3	1.1	0.1	(Miyakawa et al.,
			Aug 2004		21.8	11.3	6.2	1.4	2.9	0	2008) ⁷⁶
Japan	Tokyo	urban	Aug 2008	Q-AMS	10.6	5.6	3.4	0.2	1.4	0	(Xing et al., 2011) ⁷⁷
Japan	Saitama	suburban	Jul-Aug, 2004	Q-AMS	32.4	17.9	8.1	2.5	3.5	0.4	(Miyakawa et al.,
			Aug 2004		13.4	6.8	3.8	0.9	1.7	0.2	2008) ⁷⁶
Japan	Okinawa	Island	Oct 2003	Q-AMS	14.45	3.1	9.2	0.19	1.9	0.06	(Zhang et al., 2007) ⁷⁸
			Nov 2003		9.82	1.9	6.6	0.14	1.1	0.08	
			Dec 2003		15.41	3.1	10.3	0.23	1.7	0.08	
			Mar-Apr, 2004		7.89	1.7	4.7	0.15	1.3	0.04	
			Apr 2004		15.21	2.7	9.5	0.18	2.8	0.03	
Japan	Fukue	Island	Mar-Apr, 2003	Q-AMS	12.03	5	4.8	0.56	1.6	0.07	(Takami et al.,
											2005) ⁷⁹

Table S3. Summary of sampling sites and mass concentrations, O/C and H/C ratios of OA components for AMS measurements in Asia.

Area	Site	Site type	Sampling time	Instrument	НОА	СОА	BBOA	ССОА	LO-OOA	MO-OOA	Reference
Tibet	Menyuan	background	Sep-Oct, 2013	Q-ACSM			0.8			4.1 OOA	(Du et al.,
											2015) ¹
Tibet	Nam Co	background	May-Jul, 2015	HR-AMS					0.56	0.8	(Xu et al.,
				O/C=0.88					O/C=0.49	O/C=0.96	2018) ²
				H/C=1.33					H/C=1.34	H/C=1.04	
Tibet	Qomolang-	background	Apr-May, 2016	HR-AMS			1.1	0.3 NOA		1	(Zhang et
	ma			O/C=1.07			O/C=0.85	O/C=1.1		O/C=1.34	al., 2018) ³
				H/C=1.29			H/C=1.42	H/C=1.16		H/C=1.17	
Tibet	Waliguan	background	Jul 2017	HR-AMS	0.21		0.58		1.27 aged	1.08 OOA	(Zhang et
				O/C=0.99	O/C=0.33		O/C=0.69		BBOA	O/C=1.42	al., 2019) ⁴
				H/C=1.43	H/C=1.83		H/C=1.58		O/C=1.02	H/C=1.09	
									H/C=1.5		
Tibet	Mt. Yulong	background	Mar-Apr, 2015	HR-AMS			0.5		0.85 aged	2.53	(Zheng et
				O/C=1.11			O/C=0.37		BBOA	OOA	al., 2017) ⁵
				H/C=1.4			H/C=1.87		O/C=0.85	O/C=1.45	
									H/C=1.57	H/C=1.26	
Hainan	Mt. Wuzhi	background	Mar-Apr, 2015	HR-AMS					1.9	3	(Zhu et al.,
				O/C=0.67					O/C=0.55	O/C=1.35	2016)6
				H/C=1.52					H/C=1.57	H/C=1.08	
NCP	Mt. Tai	background	Jun 2010-Jan 2012	Q-AMS							(Zhang et
											al., 2014) ⁷
YRD	Shanghai	urban	May-Jun, 2010	HR-AMS	2				3.9	2.5	(Huang et
				O/C=0.28	O/C=0.16				O/C=0.35	O/C=0.65	al., 2012) ⁸
				H/C=1.74	H/C=1.77				H/C=1.48	H/C=1.49	(AA
											method)
YRD	Shanghai	urban	Nov 2016-Jan 2017	HR-AMS							(Zhu et al.,
											2018) ⁹
YRD	Nanjing	urban	Feb-Mar, 2015	SP-AMS	2.4	1.8	1.9 IOA	1.2 LSOA	1.9	2.6	(Wang et
					O/C=0.15	O/C=0.24	O/C=0.33	O/C=0.33	O/C=0.47	O/C=0.59	al., 2016)10
					H/C=1.73	H/C=1.61	H/C=1.37	H/C=1.64	H/C=1.38	H/C=1.27	
YRD	Nanjing	urban	Apr 2015	SP-AMS	3.5	2.1			3.5	3.6	(Wang et
				O/C=0.27	O/C=0.1	O/C=0.16			O/C=0.32	O/C=0.55	al., 2016) ¹¹
				H/C=1.52	H/C=1.75	H/C=1.67			H/C=1.51	H/C=1.27	
YRD	Nanjing	urban	Dec 2013	Q-ACSM	5	5	5.8		4.6	18	(Zhang et
											al., 2015) ¹²
YRD	Hangzhou	urban	Aug 2016	HR-AMS	3.4	3.1			6.6	3.9	(Li et al.,
			Aug-Sep, 2016		0.3	2			2.4	9	2018) ¹³
			Sep 2016		2	4.2			4.3	8	
YRD	Jiaxing	suburban	Jun-Jul, 2010	HR-AMS	3.3					7.3 OOA	(Huang et
				O/C=0.28	O/C=0.13					O/C=0.41	al., 2013) ¹⁴

				H/C=1.55	H/C=1.77				H/C=1.47	(AA
			Dec 2010		5.1		3.7		3.9 OOA	method)
				O/C=0.33	O/C=0.11		O/C=0.27		O/C=0.59	
				H/C=1.6	H/C=1.85		H/C=1.51		H/C=1.29	
YRD	Lake	rural	Mar-Apr, 2011	HR-AMS	3			 4.8	2	(Zhu et al.,
	Hongze				O/C=0.28			O/C=0.86	O/C=0.89	2016) ⁶
					H/C=1.73			H/C=1.37	H/C=1.56	
YRD	Lin'an	background	Mar 2013	Q-AMS				 		(Zhang et
										al., 2015)15
YRD	Lin'an	background	Nov-Dec, 2013	Q-AMS	6.4		7.2	 2.6	12.8	(Zhang et
										al., 2015)16
PRD	Shenzhen	urban	Jan-Feb, 2009	HR-AMS				 		(Yao et al.,
										2010) ¹⁷
PRD	Shenzhen	urban	Jan-Feb, 2009	HR-AMS	19.9			 	9.5	(Huang et
					POA				OOA	al., 2010)18
PRD	Shenzhen	urban	Oct-Dec, 2009	HR-AMS	5.2		4.3	 4.9	3.3	(He et al.,
				O/C=0.3	O/C=0.11		O/C=0.32	O/C=0.45	O/C=0.59	2011)19
				H/C=1.63	H/C=1.7		H/C=1.47	H/C=1.45	H/C=1.26	(AA
										method)
PRD	Shenzhen	urban	Dec 2014-Jan 2015	HR-AMS	2.5	3.8	1.6	 7.2	3.3	(Cao et al.,
				O/C=0.52	O/C=0.1	O/C=0.18	O/C=0.33	O/C=0.76	O/C=0.95	2018) ²⁰
				H/C=1.61	H/C=2	H/C=1.77	H/C=1.52	H/C=1.54	H/C=1.18	
PRD	Dongguan	urban	Dec 2013-Jan 2014	HR-AMS	3.2	4.6	2.9	 3.1	9.4	(Lan et al.,
										2018)21
PRD	Heshan	urban	Nov-Dec, 2010	HR-AMS	3.1		2.5	 5	6.8	(Gong et
		outflow		O/C=0.4	O/C=0.09		O/C=0.19	O/C=0.37	O/C=0.55	al., 2012) ²²
				H/C=1.49	H/C=1.8		H/C=1.41	H/C=1.33	H/C=1.3	(AA
										method)
PRD	HongKong	urban	Sep 2013	Q-ACSM	2.7	3.6		 3.1	5.7	(Sun et al.,
										2016) ²³
PRD	Backgarden	rural	July 2006	Q-AMS	5.5			 3.9	6.7	(Xiao et
										al., 2011) ²⁴
PRD	Kaiping	rural	Oct-Nov, 2008	HR-AMS			2.7	 4	4.5	(Huang et
				O/C=0.47			O/C=0.26	O/C=0.39	O/C=0.64	al., 2011) ²⁵
				H/C=1.48			H/C=1.62	H/C=1.48	H/C=1.3	(AA
										method)
PRD	Panyu	suburban	Nov 2014-Jan 2015	HR-AMS	6.7	2.1	1	 8.2	7.7	(Qin et al.,
				O/C=0.53	O/C=0.22	O/C=0.12	O/C=0.51	O/C=0.69	O/C=0.92	2017) ²⁶
				H/C=1.65	H/C=1.91	H/C=1.83	H/C=1.92	 H/C=1.68	H/C=1.37	
PRD	HongKong	suburban	Apr-Jun 2011	HR-AMS	0.4	0.4		 1.6	1.6	(Li et al.,
					O/C=0.09	O/C=0.08		 O/C=0.23	O/C=0.68	2015)27
					H/C=1.67	H/C=1.74		 H/C=1.46	H/C=1.13	(AA
			Sep 2011		0.47	0.28		 2.16	1.19	method)
1					O/C=0.25	O/C=0.11	1	O/C=0.42	O/C=0.79	

					H/C=1.67	H/C=1.69			H/C=1.38	H/C=1.3	
			Oct-Dec 2011		0.35	0.45			2.5	2.7	
					O/C=0.08	O/C=0.1			O/C=0.36	O/C=0.6	
					H/C=1.76	H/C=1.69			H/C=1.44	H/C=1.27	
			Jan-Mar 2012		0.4	0.6			1.3	2.8	
					O/C=0.09	O/C=0.12			O/C=0.27	O/C=0.63	
					H/C=1.77	H/C=1.66			H/C=1.48	H/C=1.25	
PRD	HongKong	suburban	Oct 2016	HR-AMS		O/C=0.21			O/C=0.75	O/C=1.04	(Li et al.,
				O/C=0.68		H/C=1.85			H/C=1.52	H/C=1.38	2019) ²⁸
				H/C=1.57							
NW	Lanzhou	urban	Jul-Aug, 2012	HR-AMS	1.8	2.8			3.1	3.7	(Xu et al.,
				O/C=0.33	O/C=0.1	O/C=0.1			O/C=0.28	O/C=0.68	2014) ²⁹
				H/C=1.49	H/C=1.85	H/C=1.69			H/C=1.33	H/C=1.3	(AA
											method)
NW	Lanzhou	urban	Jan-Feb, 2014	HR-AMS	2.9	5.9	3.2	6.4	6.5	4.4	(Xu et al.,
				O/C=0.28	O/C=0.1	O/C=0.07	O/C=0.24	O/C=0.2	O/C=0.33	O/C=0.8	2016) ³⁰
				H/C=1.55	H/C=1.86	H/C=1.73	H/C=1.55	H/C=1.54	H/C=1.47	H/C=1.14	(AA
											method)
NW	Lanzhou	urban	Oct-Dec, 2014	Q-AMS	1.5	3.4	2.3	3.7	3.2	4.1	(Zhang et
											al., 2017) ³¹
NW	Xi'an	urban	Dec 2012-Jan 2013	Q-ACSM							(Wang et
											al., 2014) ³²
NW	Baoji	urban	Feb-Mar, 2014	Q-ACSM	5.9	4.2	3.9	2.7	6.8	6.2	(Wang et
											al., 2017) ³³
NCP	Beijing	urban	Jul 2006	Q-AMS	11.0				4.5	12.6	(Sun et al.,
											2010) ³⁴
NCP	Beijing	urban	Jul-Sep, 2008	HR-AMS	4.3	5.8			5.7	8.1	(Huang et
					O/C=0.17	O/C=0.11			O/C=0.47	O/C=0.48	al., 2010) ³⁵
					H/C=1.58	H/C=1.73			H/C=1.33	H/C=1.38	(AA
											method)
NCP	Beijing	urban	Nov-Dec, 2010	HR-AMS	4.7	6.8	4.1	8.3	4.3	6.3	(Hu et al.,
				O/C=0.32	O/C=0.15	O/C=0.14	O/C=0.22	O/C=0.16	O/C=0.47	O/C=0.58	2016) ³⁶
				H/C=1.65	H/C=1.75	H/C=1.75	H/C=1.55	H/C=1.56	H/C=1.65	H/C=1.47	
					3.4	5.6			7.5	9.9	
			Aug-Sep, 2011	O/C=0.56	O/C=0.22	O/C=0.17			O/C=0.62	O/C=0.82	
				H/C=1.61	H/C=1.78	H/C=1.8			H/C=1.45	H/C=1.24	
NCP	Beijing	urban	Mar-May, 2012	HR-AMS	2.8	2.6	1.8			6.8 OOA	(Hu et al.,
				O/C=0.49	O/C=0.18	O/C=0.13	O/C=0.31			O/C=1	2017) ³⁷
				H/C=1.63	H/C=1.81	H/C=1.89	H/C=1.67			H/C=1.38	
			Jul-Aug, 2012		1.4	2.5			5.3	3.3	
				O/C=0.53	O/C=0.19	O/C=0.17			O/C=0.67	O/C=0.91	
				H/C=1.61	H/C=1.71	H/C=1.85			H/C=1.51	H/C=1.4	
			Oct-Nov, 2012		2.5	5.2	2			8.6 OOA	
				O/C=0.46	O/C=0.07	O/C=0.13	O/C=0.24			O/C=0.88	

				H/C=1.58	H/C=1.94	H/C=1.82	H/C=1.53			H/C=1.32	
			Jan-Mar, 2013		5.5	4.3		5	5	9.8	
				O/C=0.47	O/C=0.36	O/C=0.23		O/C=0.14	O/C=0.77	O/C=0.84	
				H/C=1.52	H/C=1.66	H/C=1.73		H/C=1.45	H/C=1.72	H/C=1.34	
NCP	Beijing	urban	Oct 2012	HR-AMS	4.9	9.5	5.8			8.6 OOA	(Xu et al.,
					O/C=0.13	O/C=0.07	O/C=0.31			O/C=1	2018) ³⁸
					H/C=1.6	H/C=1.75	H/C=1.53			H/C=1.08	
NCP	Beijing	urban	Jan-Feb, 2013	HR-AMS	4.9	8.9		6.7	11.6	12.6	(Zhang et
				O/C=0.34	O/C=0.11	O/C=0.11		O/C=0.28	O/C=0.4	O/C=0.84	al., 2014) ³⁹
				H/C=1.44	H/C=1.55	H/C=1.71		H/C=1.61	H/C=1.35	H/C=1.21	(AA
											method)
NCP	Beijing	urban	Dec 2013-Jan 2014	HR-AMS	3.8	6.8	3.4	7.6	7.2aq-OOA	9.5 OOA	(Sun et al.,
				O/C=0.37	O/C=0.11	O/C=0.14	O/C=0.36	O/C=0.14	O/C=0.81	O/C=0.75	2016)40
				H/C=1.75	H/C=2.08	H/C=1.88	H/C=1.67	H/C=1.67	H/C=1.75	H/C=1.51	
NCP	Beijing	urban	Jun-Jul, 2014	HR-AMS	2.4	5.7			6.5	4.1	(Xu et al.,
				O/C=0.9	O/C=0.3	O/C=0.15			O/C=0.78	O/C=1.15	2017) ⁴¹
				H/C=1.52	H/C=1.8	H/C=1.88			H/C=1.55	H/C=1.45	
			Oct-Nov, 2014		3.3	7.4	4		6.9	7.8	
				O/C=0.78	O/C=0.19	O/C=0.13	O/C=0.65		O/C=0.58	O/C=1.23	
				H/C=1.48	H/C=1.95	H/C=1.87	H/C=1.81		H/C=1.5	H/C=1.44	
NCP	Beijing	urban	Oct 2014	HR-AMS	6.2	5.9	3.5		5.5	13.5	(Zhang et
					O/C=0.07	O/C=0.13	O/C=0.2		O/C=0.54	O/C=0.84	al., 2016) ⁴²
					H/C=1.75	H/C=1.61	H/C=1.53		H/C=1.46	H/C=1.13	
			Dec 2014		4.2	3.5		4.5		8.1 OOA	
					O/C=0.08	O/C=0.1		O/C=0.25		O/C=0.56	
					H/C=1.66	H/C=1.68		H/C=1.19		H/C=1.42	
NCP	Beijing	urban	Nov-Dec, 2014	HR-AMS	4.7 FFOA	7.6	3.7	4.1 OPOA	5 aqOOA	5.3 OOA	(Xu et al.,
				O/C=0.4	O/C=0.16	O/C=0.19	O/C=0.39	O/C=0.38	O/C=0.65	O/C=1.09	2019) ⁴³
				H/C=1.69	H/C=1.83	H/C=1.83	H/C=1.75	H/C=1.48	H/C=1.82	H/C=1.59	
			Nov-Dec, 2016		5.6 FFOA	5.4	6.3	6.2 OPOA	4.9 aqOOA	7.9 OOA	
				O/C=0.45	O/C=0.22	O/C=0.16	O/C=0.32	O/C=0.4	O/C=0.82	O/C=1.09	
				H/C=1.68	H/C=1.69	H/C=1.82	H/C=1.98	H/C=1.58	H/C=1.75	H/C=1.27	
NCP	Beijing	urban	Sep 2015	HR-AMS	2.8	4			7.4	5.8	(Li et al.,
					O/C=0.16	O/C=0.09			O/C=0.45	O/C=0.88	2020)44
					H/C=1.62	H/C=1.71			H/C=1.4	H/C=1.11	
NCP	Beijing	urban	Aug-Sep, 2015	HR-AMS	1.7	3.8			6.2	4.3	(Zhao et
					O/C=0.23	O/C=0.13			O/C=0.84	O/C=1	al., 2017) ⁴⁵
					H/C=1.89	H/C=1.85			H/C=1.55	H/C=1.39	
NCP	Beijing	urban	Jun 2017	HR-AMS	1	2.4			3.8	2.6	(Xu et al.,
				O/C=0.57	O/C=0.1	O/C=0.23			O/C=0.62	O/C=1.21	2019) ⁴⁶
				H/C=1.64	H/C=1.89	H/C=1.82			H/C=1.62	H/C=1.25	
			May-Jun, 2018		1.7	2			5.8	3.4	
				O/C=0.68	O/C=0.17	O/C=0.27			O/C=0.76	O/C=1.3	
				H/C=1.5	H/C=1.83	H/C=1.76			H/C=1.44	H/C=1.13	

r											
NCP	Beijing	urban	Nov 2018-Jan 2019	HR-AMS	1.3	2.4	1.3	1.7	1.6	3.2	(Li et al.,
-											2020)
NCP	Tianjin	urban	Sep 2010	C-ToF-AMS							(Zhang et
											al., 2012)48
NCP	Xinxiang	urban	Aug 2017	Q-ACSM	4.4				4.1	9.5	(Li et al.,
											2018)49
NCP	Handan	urban	Dec 2015-Feb 2016	Q-ACSM	5.8		20.8	24.2		32.5 OOA	(Li et al.,
											2017)50
NCP	Shijiazhuan	urban	Jan-Feb, 2014	Q-ACSM	11.6	14.3	15.1	24		24 OOA	(Huang et
-	g										al., 2019) ⁵¹
NCP	Xianghe	suburban	Jun 2013	Q-ACSM	5.3		3.2		5.1	14.7	(Sun et al.,
											2016)52
NCP	Xinzhou	suburban	Jul-Sep, 2014	Q-ACSM	2.1				4.3	5.3	(Wang et
											al., 2016)53
NCP	Xingtai	suburban	Apr-Jun, 2016	Q-ACSM	1.25	1.25				8.9 OOA	(Zhang et
											al., 2018) ⁵⁴
NCP	Liulihe	rural	Oct-Nov, 2014	Q-ACSM	6	6			9	9	(Hua et al.,
			Mar-Apr, 2015		1.6	7.5				6.9	2018)55
			Aug-Sep, 2015		2.3					11.6 OOA	
			Dec-Jan, 2015		19.2	9.2	20.5			21.9 OOA	
NCP	Yufa	suburban	Aug-Sep, 2006	Q-AMS							(Gunthe et
											al., 2011)56
NCP	Xinglong	suburban	Nov 2018-Jan 2019	Q-AMS	2.2 POA					3.2 OOA	(Li et al.,
											2020) ⁴⁷
NCP	Changping	suburban	Jun 2016	HR-AMS							(Li et al.,
				O/C=0.52	O/C=0.05	O/C=0.22	O/C=0.46		O/C=0.48	O/C=0.79	2019) ²⁸
				H/C=1.64	H/C=2.06	H/C=1.81	H/C=1.76		H/C=1.53	H/C=1.51	
NCP	Changdao	island	Mar-Apr, 2011	HR-AMS	3.1			1.2	3.2	5.9	(Hu et al.,
				O/C=0.59	O/C=0.34			O/C=0.17	O/C=0.62	O/C=0.78	2013)57
				H/C=1.33	H/C=1.52			H/C=1.4	H/C=1.33	H/C=1.27	(AA
											method)
India	Kanpur	urban	Nov 2012	HR-AMS		BBOA1	BBOA2	agedBBOA			(Chakrabo
			Dec 2012-Jan 2013		O/C=0.15	O/C=0.32	O/C=0.38	O/C=0.69	O/C=0.44	O/C=0.86	rty et al.,
					H/C=1.78	H/C=1.64	H/C=1.49	H/C=1.57	H/C=1.43	H/C=1.18	2015)58
											(AA
											method)
India	Kanpur	urban	Feb-Mar, 2013	HR-AMS	5.1	4.5 OPOA	2.6 BBOA1	5.1 BBOA2	6.1	8.6	(Kumar et
					O/C=0.12	O/C=0.24	O/C=0.43	O/C=0.45	O/C=0.67	O/C=0.88	al., 2016) ⁵⁹
											(AA
											method)
India	Kanpur	urban	Dec 2014-Feb 2015	HR-AMS	6.6		22.1	8.2	LO-+MO-		(Chakrabo
					O/C=0.05		O/C=0.26	agedBBOA	OOA=45.1	O/C=1.19	rty et al.,
					H/C=1.84		H/C=1.68	O/C=0.73	O/C=0.96	H/C=1.11	2016)58
								H/C=1.53	H/C=1.17		(AA
				1 · · · · · · · · · · · · · · · · · · ·		•			•		

											method)
India	Kanpur	urban	May-Aug, 2015	HR-AMS	0.5		0.4		2.3	2.8	(Chakrabo
					O/C=0.09		O/C=0.45		O/C=0.56	O/C=0.95	rty et al.,
					H/C=1.83		H/C=1.38		H/C=1.37	H/C=1.17	2016) ⁶⁰
											(AA
											method)
India	Kanpur	urban	Sep-Oct	HR-AMS	2.5		3.8	3.8	7.1	8.1	(Chakrabo
					O/C=0.09		O/C=0.36	agedBBOA	O/C=0.53	O/C=1.12	rty et al.,
					H/C=1.89		H/C=1.51	O/C=0.79	H/C=1.44	H/C=1.16	2018)61
								H/C=1.44			
India	Ahmedabad	urban	Sep-Oct, 2017	HR-AMS	3.8				2.3	3	(Singh et
											al., 2019)62
India	Delhi	urban	Dec 2016-Feb 2017	Q-ACSM	53.9 POA					58.1 OOA	(Gani et
			Feb-Mar, 2017		30.5 POA					30.5 OOA	al., 2019) ⁶³
			Apr-Jun, 2017		15.4 POA					19.6 OOA	
			Jul-Sep, 2017		8.6 POA					14.4 OOA	
India	Mt. Ghats	Background	Mar-May, 2016	ToF-ACSM	2		1.1		1.05	2.05	(Mukherje
			Jun-Sep, 2016		0.64		0.56		LO-+MO-		e et al.,
			Oct-Nov, 2016		0.6		0.2		OOA=0.31	0.6	2018) ⁶⁴
			Dec 2016-Feb 2017		1.47		1.97		1.2	1.83	
									1.77		
Singapore		urban	Oct 2015	ToF-ACSM	4.5		5.8	7.2		21.7 OOA	(Budisulist
					O/C=0.16		O/C=0.25	O/C=0.11		O/C=0.88	iorini et al,
					H/C=1.57		H/C=1.48	H/C=1.64		H/C=1.55	2018) ⁶⁵
Singapore		urban	May-Jun, 2017	SP-AMS	1.09	0.65	1.48		0.58	1.79	(Rivellini
					O/C=0.07	O/C=0.15	O-HOA		O/C=0.41	O/C=0.94	et al,
					H/C=2.12	H/C=1.88	O/C=0.28		H/C=1.67	H/C=1.41	2019)66
							H/C=1.87				
Korea	Seoul	urban	Dec 2015-Jan 2016	HR-AMS	1.9	2.4	2.8		1.8	3.2	(Kim et al.,
				O/C=0.37	O/C=0.06	O/C=0.14	O/C=0.34		O/C=0.56	O/C=0.68	2017) ⁶⁷
				H/C=1.79	H/C=2.21	H/C=1.89	H/C=1.74		H/C=1.9	H/C=1.61	
Korea	Seoul	urban	Apr-Jun, 2016	HR-AMS	1.7	2.1			2.6	3.3	(Kim et al.,
				O/C=0.49	O/C=0.15	O/C=0.19			O/C=0.44	O/C=0.91	2018) ⁶⁸
					H/C=2	H/C=1.83			H/C=1.73	H/C=1.46	
Korea	Gwangju	urban	Aug-Sep, 2011	Q-AMS							(Park et al.,
			Dec 2011								2012)69
Korea	Gwangju	urban	Aug-Sep, 2011	Q-AMS	1.15				0.89	1.92	(Park et al.,
			Dec 2011		2.05				1.37	2	2013)70
			May 2012		0.94				1.26	1.08	
			Jul-Aug, 2012		1.5				1.56	1.84	
Korea	Gwangju	urban	May-Jun, 2015	Q-AMS	4.8					4.3 OOA	(Cho et al.,
											2018) ⁷¹
Korea	Gwangju	urban	Nov 2013	Q-AMS	1.1				1.31	1.17	(Lee et al.,
											2017)72

Korea	Boseong	coastal	Nov2012&Nov	Q-AMS	0.23	 	 0.34	0.27	(Lee et al.,
			2013						2017)72
Korea	Baengnyeo	island	May 2011	HR-AMS		 	 		(Lee et al.,
	ng		Jun 2011						2015)73
			Jul 2011						
			Aug 2011						
			Sep 2011						
			Oct 2011						
			Nov 2011						
Japan	Tokyo	urban	Feb 2003	Q-AMS		 	 		(Topping
			Jul-Aug, 2003						et al.,
			Sep-Oct, 2003						2004)74
			Jan-Feb, 2004						
Japan	Tokyo	urban	Jul-Aug, 2004	Q-AMS		 	 		(Takegawa
			Aug 2004						et al.,
									2006)75
Japan	Tokyo	urban	Aug 2008	Q-AMS		 	 		(Miyakaw
									a et al.,
									2008)76
Japan	Saitama	suburban	Jul-Aug, 2004	Q-AMS		 	 		(Xing et
			Aug 2004						al., 2011)77
Japan	Okinawa	Island	Oct 2003	Q-AMS		 	 		(Miyakaw
			Nov 2003						a et al.,
			Dec 2003						2008) ⁷⁶
			Mar-Apr, 2004						
			Apr 2004						
Japan	Fukue	Island	Mar-Apr, 2003	Q-AMS		 	 		(Zhang et
									al., 2007)78

Reference

- 1 W. Du, Y. L. Sun, Y. S. Xu, Q. Jiang, Q. Q. Wang, W. Yang, F. Wang, Z. P. Bai, X. D. Zhao and Y. C. Yang, Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau, *Atmos. Chem. Phys.*, 2015, **15**, 10811-10824.
- 2 J. Xu, Q. Zhang, J. Shi, X. Ge, C. Xie, J. Wang, S. Kang, R. Zhang and Y. Wang, Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry, *Atmos. Chem. Phys.*, 2018, **18**, 427-443.
- 3 X. Zhang, J. Xu, S. Kang, Y. Liu and Q. Zhang, Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry, *Atmos. Chem. Phys.*, 2018, **18**, 4617-4638.
- 4 X. Zhang, J. Xu, S. Kang, Q. Zhang and J. Sun, Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry, *Atmos. Chem. Phys.*, 2019, **19**, 7897-7911.
- 5 J. Zheng, M. Hu, Z. Du, D. Shang, Z. Gong, Y. Qin, J. Fang, F. Gu, M. Li, J. Peng, J. Li, Y. Zhang, X. Huang, L. He, Y. Wu and S. Guo, Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China, *Atmos. Chem. Phys.*, 2017, **17**, 6853-6864.
- 6 Q. Zhu, L.-Y. He, X.-F. Huang, L.-M. Cao, Z.-H. Gong, C. Wang, X. Zhuang and M. Hu, Atmospheric aerosol compositions and sources at two national background sites in northern and southern China, *Atmos. Chem. Phys.*, 2016, **16**, 10283-10297.
- 7 Y. M. Zhang, X. Y. Zhang, J. Y. Sun, G. Y. Hu, X. J. Shen, Y. Q. Wang, T. T. Wang, D. Z. Wang and Y. Zhao, Chemical composition and mass

size distribution of PM1 at an elevated site in central east China, Atmos. Chem. Phys., 2014, 14, 12237-12249.

- 8 X. F. Huang, L. Y. He, L. Xue, T. L. Sun, L. W. Zeng, Z. H. Gong, M. Hu and T. Zhu, Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo, *Atmos. Chem. Phys.*, 2012, **12**, 4897-4907.
- 9 W. Zhu, J. Xie, Z. Cheng, S. Lou, L. Luo, W. Hu, J. Zheng, N. Yan and B. Brooks, Influence of chemical size distribution on optical properties for ambient submicron particles during severe haze events, *Atmos. Environ.*, 2018, **191**, 162-171.
- 10 J. Wang, T. B. Onasch, X. Ge, S. Collier, Q. Zhang, Y. Sun, H. Yu, M. Chen, A. S. H. Prévôt and D. R. Worsnop, Observation of Fullerene Soot in Eastern China, *Environ. Sci. Technol. Lett.*, 2016, **3**, 121-126.
- 11 J. Wang, X. Ge, Y. Chen, Y. Shen, Q. Zhang, Y. Sun, J. Xu, S. Ge, H. Yu and M. Chen, Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry, *Atmos. Chem. Phys.*, 2016, 16, 9109-9127.
- 12 Y. Zhang, L. Tang, H. Yu, Z. Wang, Y. Sun, W. Qin, W. Chen, C. Chen, A. Ding, J. Wu, S. Ge, C. Chen and H.-c. Zhou, Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime, *Atmos. Environ.*, 2015, 123, 339-349.
- 13 K. Li, L. Chen, S. J. White, X. Zheng, B. Lv, C. Lin, Z. Bao, X. Wu, X. Gao, F. Ying, J. Shen, M. Azzi and K. Cen, Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou, *Environ. Pollut.*, 2018, **232**, 42-54.
- 14 X.-F. Huang, L. Xue, X.-D. Tian, W.-W. Shao, T.-L. Sun, Z.-H. Gong, W.-W. Ju, B. Jiang, M. Hu and L.-Y. He, Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation, *Atmos. Environ.*, 2013, **64**, 200-207.
- 15 L. Zhang, J. Y. Sun, X. J. Shen, Y. M. Zhang, H. Che, Q. L. Ma, Y. W. Zhang, X. Y. Zhang and J. A. Ogren, Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China, *Atmos. Chem. Phys.*, 2015, **15**, 8439-8454.
- 16 Y. W. Zhang, X. Y. Zhang, Y. M. Zhang, X. J. Shen, J. Y. Sun, Q. L. Ma, X. M. Yu, J. L. Zhu, L. Zhang and H. C. Che, Significant concentration changes of chemical components of PM₁ in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution, *Sci. Total. Environ.*, 2015, **538**, 7-15.
- 17 T. Yao, X. Huang, L. He, M. Hu, T. Sun, L. Xue, Y. Lin, L. Zeng and Y. Zhang, High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates, *Sci. China Chem.*, 2010, **53**, 1801-1808.
- 18 X. Huang, Q. Zhao, L. He, M. Hu, Q. Bian, L. Xue and Y. Zhang, Identification of secondary organic aerosols based on aerosol mass spectrometry, *Science China Chemistry*, 2010, **53**, 2593-2599.
- 19 L.-Y. He, X.-F. Huang, L. Xue, M. Hu, Y. Lin, J. Zheng, R. Zhang and Y.-H. Zhang, Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry, *J. Geophys. Res.*, 2011, **116**, D12304.
- 20 L.-M. Cao, X.-F. Huang, Y.-Y. Li, M. Hu and L.-Y. He, Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China, Atmos. Chem. Phys., 2018, 18, 1729-1743.
- 21 Z. Lan, B. Zhang, X. Huang, Q. Zhu, J. Yuan, L. Zeng, M. Hu and L. He, Source apportionment of PM_{2.5} light extinction in an urban atmosphere in China, *J. Environ. Sci. (China)*, 2018, **63**, 277-284.
- 22 Z. Gong, Z. Lan, L. Xue, L. Zeng, L. He and X. Huang, Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China, *Front. Env. Sci. Eng.*, 2012, **6**, 725-733.
- 23 C. Sun, B. P. Lee, D. Huang, Y. Jie Li, M. I. Schurman, P. K. K. Louie, C. Luk and C. K. Chan, Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong, *Atmos. Chem. Phys.*, 2016, **16**, 1713-1728.
- 24 R. Xiao, N. Takegawa, M. Zheng, Y. Kondo, Y. Miyazaki, T. Miyakawa, M. Hu, M. Shao, L. Zeng, Y. Gong, K. Lu, Z. Deng, Y. Zhao and Y. H. Zhang, Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign, *Atmos. Chem. Phys.*, 2011, **11**, 6911-6929.
- 25 X. F. Huang, L. Y. He, M. Hu, M. R. Canagaratna, J. H. Kroll, N. L. Ng, Y. H. Zhang, Y. Lin, L. Xue, T. L. Sun, X. G. Liu, M. Shao, J. T. Jayne and D. R. Worsnop, Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-

Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 2011, 11, 1865-1877.

- 26 Y. M. Qin, H. B. Tan, Y. J. Li, M. I. Schurman, F. Li, F. Canonaco, A. S. H. Prévôt and C. K. Chan, Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China, *Atmos. Chem. Phys.*, 2017, 17, 10245-10258.
- 27 Y. J. Li, B. P. Lee, L. Su, J. C. H. Fung and C. K. Chan, Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, *Atmos. Chem. Phys.*, 2015, **15**, 37-53.
- 28 J. Li, Q. Liu, Y. Li, T. Liu, D. Huang, J. Zheng, W. Zhu, M. Hu, Y. Wu, S. Lou, Å. M. Hallquist, M. Hallquist, C. K. Chan, F. Canonaco, A. S. H. Prévôt, J. C. H. Fung, A. K. H. Lau and J. Z. Yu, Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer, *J. Geophys. Res. Atmos.*, 2019, **124**, 5629-5649.
- 29 J. Xu, Q. Zhang, M. Chen, X. Ge, J. Ren and D. Qin, Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, *Atmos. Chem. Phys.*, 2014, 14, 12593-12611.
- 30 J. Xu, J. Shi, Q. Zhang, X. Ge, F. Canonaco, A. S. H. Prévôt, M. Vonwiller, S. Szidat, J. Ge, J. Ma, Y. An, S. Kang and D. Qin, Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, *Atmos. Chem. Phys.*, 2016, **16**, 14937-14957.
- 31 X. Zhang, Y. Zhang, J. Sun, Y. Yu, F. Canonaco, A. S. H. Prevot and G. Li, Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry, *Environ. Pollut.*, 2017, **222**, 567-582.
- 32 Q. Wang, R. J. Huang, J. Cao, Y. Han, G. Wang, G. Li, Y. Wang, W. Dai, R. Zhang and Y. Zhou, Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement, *Aerosol Sci. Technol.*, 2014, **48**, 689-697.
- 33 Y. C. Wang, R. J. Huang, H. Y. Ni, Y. Chen, Q. Y. Wang, G. H. Li, X. X. Tie, Z. X. Shen, Y. Huang, S. X. Liu, W. M. Dong, P. Xue, R. Fröhlich, F. Canonaco, M. Elser, K. R. Daellenbach, C. Bozzetti, I. El Haddad, A. S. H. Prévôt, M. R. Canagaratna, D. R. Worsnop and J. J. Cao, Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China, *Atmos. Environ.*, 2017, **158**, 128-137.
- 34 J. Sun, Q. Zhang, M. R. Canagaratna, Y. Zhang, N. L. Ng, Y. Sun, J. T. Jayne, X. Zhang, X. Zhang and D. R. Worsnop, Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 2010, 44, 131-140.
- 35 X. F. Huang, L. Y. He, M. Hu, M. R. Canagaratna, Y. Sun, Q. Zhang, T. Zhu, L. Xue, L. W. Zeng, X. G. Liu, Y. H. Zhang, J. T. Jayne, N. L. Ng and D. R. Worsnop, Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, *Atmos. Chem. Phys.*, 2010, **10**, 8933-8945.
- 36 W. Hu, M. Hu, W. Hu, J. L. Jimenez, B. Yuan, W. Chen, M. Wang, Y. Wu, C. Chen, Z. Wang, J. Peng, L. Zeng and M. Shao, Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter, *J. Geophys. Res. Atmos.*, 2016, **121**, 1955-1977.
- 37 W. Hu, M. Hu, W.-W. Hu, J. Zheng, C. Chen, Y. Wu and S. Guo, Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, *Atmos. Chem. Phys.*, 2017, **17**, 9979-10000.
- 38 P. Xu, J. Zhang, D. Ji, Z. Liu, G. Tang, C. Jiang and Y. Wang, Characterization of submicron particles during autumn in Beijing, China, J. Environ. Sci. (China), 2018, 63, 16-27.
- 39 J. K. Zhang, Y. Sun, Z. R. Liu, D. S. Ji, B. Hu, Q. Liu and Y. S. Wang, Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, *Atmos. Chem. Phys.*, 2014, **14**, 2887-2903.
- 40 Y. Sun, W. Du, P. Fu, Q. Wang, J. Li, X. Ge, Q. Zhang, C. Zhu, L. Ren, W. Xu, J. Zhao, T. Han, D. R. Worsnop and Z. Wang, Primary and secondary aerosols in Beijing in winter: sources, variations and processes, *Atmos. Chem. Phys.*, 2016, **16**, 8309-8329.
- 41 W. Xu, T. Han, W. Du, Q. Wang, C. Chen, J. Zhao, Y. Zhang, J. Li, P. Fu, Z. Wang, D. R. Worsnop and Y. Sun, Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China, *Environ. Sci. Technol.*, 2017,

51, 762-770.

- 42 J. K. Zhang, M. T. Cheng, D. S. Ji, Z. R. Liu, B. Hu, Y. Sun and Y. S. Wang, Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China, *Sci. Total. Environ.*, 2016, **562**, 812-821.
- 43 W. Xu, Y. Sun, Q. Wang, J. Zhao, J. Wang, X. Ge, C. Xie, W. Zhou, W. Du, J. Li, P. Fu, Z. Wang, D. R. Worsnop and H. Coe, Changes in Aerosol Chemistry from 2014 to 2016 in Winter in Beijing: Insights from High Resolution Aerosol Mass Spectrometry, J. Geophys. Res.- Atmos., 2019, **124**, 1132-1147.
- 44 J. Li, Z. Liu, W. Gao, G. Tang, B. Hu, Z. Ma and Y. Wang, Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China, *Atmos. Environ.*, 2020, **220**, 117070.
- 45 J. Zhao, W. Du, Y. Zhang, Q. Wang, C. Chen, W. Xu, T. Han, Y. Wang, P. Fu, Z. Wang, Z. Li and Y. Sun, Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing, *Atmos. Chem. Phys.*, 2017, **17**, 3215-3232.
- 46 W. Xu, C. Xie, E. Karnezi, Q. Zhang, J. Wang, S. N. Pandis, X. Ge, J. Zhang, J. An, Q. Wang, J. Zhao, W. Du, Y. Qiu, W. Zhou, Y. He, Y. Li,
 J. Li, P. Fu, Z. Wang, D. R. Worsnop and Y. Sun, Summertime aerosol volatility measurements in Beijing, China, *Atmos. Chem. Phys.*, 2019, 19, 10205-10216.
- 47 J. Li, Z. Liu, L. Cao, W. Gao, Y. Yan, J. Mao, X. Zhang, L. He, J. Xin, G. Tang, D. Ji, B. Hu, L. Wang, Y. Wang, L. Dai, D. Zhao, W. Du and Y. Wang, Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain, *Sci. Total Environ.*, 2020, **705**, 135803.
- 48 Q. Zhang, J. Meng, J. Quan, Y. Gao, D. Zhao, P. Chen and H. He, Impact of aerosol composition on cloud condensation nuclei activity, Atmos. Chem. Phys., 2012, 12, 3783-3790.
- 49 H. Li, Q. Zhang, B. Zheng, C. Chen, N. Wu, H. Guo, Y. Zhang, Y. Zheng, X. Li and K. He, Nitrate-driven urban haze pollution during summertime over the North China Plain, *Atmos. Chem. Phys.*, 2018, **18**, 5293-5306.
- 50 H. Li, Q. Zhang, Q. Zhang, C. Chen, L. Wang, Z. Wei, S. Zhou, C. Parworth, B. Zheng, F. Canonaco, A. S. H. Prévôt, P. Chen, H. Zhang, T. J. Wallington and K. He, Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, *Atmos. Chem. Phys.*, 2017, **17**, 4751-4768.
- 51 R.-J. Huang, Y. Wang, J. Cao, C. Lin, J. Duan, Q. Chen, Y. Li, Y. Gu, J. Yan, W. Xu, R. Fröhlich, F. Canonaco, C. Bozzetti, J. Ovadnevaite, D. Ceburnis, M. R. Canagaratna, J. Jayne, D. R. Worsnop, I. El-Haddad, A. S. H. Prévôt, amp, apos and C. D. Dowd, Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China, *Atmos. Chem. Phys.*, 2019, **19**, 2283-2298.
- 52 Y. Sun, Q. Jiang, Y. Xu, Y. Ma, Y. Zhang, X. Liu, W. Li, F. Wang, J. Li, P. Wang and Z. Li, Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer, *J. Geophys. Res. Atmos.*, 2016, **121**, 2508-2521.
- 53 Q. Wang, J. Zhao, W. Du, G. Ana, Z. Wang, L. Sun, Y. Wang, F. Zhang, Z. Li, X. Ye and Y. Sun, Characterization of submicron aerosols at a suburban site in central China, *Atmos. Environ.*, 2016, **131**, 115-123.
- 54 Y. Zhang, W. Du, Y. Wang, Q. Wang, H. Wang, H. Zheng, F. Zhang, H. Shi, Y. Bian, Y. Han, P. Fu, F. Canonaco, A. S. H. Prévôt, T. Zhu, P. Wang, Z. Li and Y. Sun, Aerosol chemistry and particle growth events at an urban downwind site in North China Plain, *Atmos. Chem. Phys.*, 2018, **18**, 14637-14651.
- 55 Y. Hua, S. Wang, J. Jiang, W. Zhou, Q. Xu, X. Li, B. Liu, D. Zhang and M. Zheng, Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China, *Sci. Total Environ.*, 2018, **626**, 519-527.
- 56 S. S. Gunthe, D. Rose, H. Su, R. M. Garland, P. Achtert, A. Nowak, A. Wiedensohler, M. Kuwata, N. Takegawa, Y. Kondo, M. Hu, M. Shao, T. Zhu, M. O. Andreae and U. Pöschl, Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing, *Atmos. Chem. Phys.*, 2011, **11**, 11023-11039.
- 57 W. W. Hu, M. Hu, B. Yuan, J. L. Jimenez, Q. Tang, J. F. Peng, W. Hu, M. Shao, M. Wang, L. M. Zeng, Y. S. Wu, Z. H. Gong, X. F. Huang and L. Y. He, Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, *Atmos. Chem. Phys.*, 2013, **13**, 10095-10112.
- 58 A. Chakraborty, T. Gupta and S. N. Tripathi, Combined effects of organic aerosol loading and fog processing on organic aerosols

oxidation, composition, and evolution, Sci. Total Environ., 2016, 573, 690-698.

- 59 B. Kumar, A. Chakraborty, S. N. Tripathi and D. Bhattu, Highly time resolved chemical characterization of submicron organic aerosols at a polluted urban location, *Environ. Sci. Process Impacts*, 2016, **18**, 1285-1296.
- 60 A. Chakraborty, T. Gupta and S. N. Tripathi, Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry, *Atmos. Environ.*, 2016, **136**, 144-155.
- 61 A. Chakraborty, A. K. Mandariya, R. Chakraborti, T. Gupta and S. N. Tripathi, Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons, *Environ. Pollut.*, 2018, **232**, 310-321.
- 62 A. Singh, R. V. Satish and N. Rastogi, Characteristics and sources of fine organic aerosol over a big semi-arid urban city of western India using HR-ToF-AMS, *Atmos. Environ.*, 2019, **208**, 103-112.
- 63 S. Gani, S. Bhandari, S. Seraj, D. S. Wang, K. Patel, P. Soni, Z. Arub, G. Habib, L. Hildebrandt Ruiz and J. S. Apte, Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, *Atmos. Chem. Phys.*, 2019, **19**, 6843-6859.
- 64 S. Mukherjee, V. Singla, G. Pandithurai, P. D. Safai, G. S. Meena, K. K. Dani and V. Anil Kumar, Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India, *Atmos. Environ.*, 2018, **180**, 79-92.
- 65 S. H. Budisulistiorini, M. Riva, M. Williams, T. Miyakawa, J. Chen, M. Itoh, J. D. Surratt and M. Kuwata, Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015, *Atmos. Chem. Phys.*, 2018, **18**, 16481-16498.
- 66 L. H. Rivellini, M. G. Adam, N. Kasthuriarachchi and A. K. Y. Lee, Characterization of carbonaceous aerosols in Singapore: insight from black carbon fragments and trace metal ions detected by a soot-particle aerosol mass spectrometer, *Atmos. Chem. Phys. Discuss.*, 2019, 2019, 1-28.
- 67 H. Kim, Q. Zhang, G.-N. Bae, J. Y. Kim and S. B. Lee, Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer, *Atmos. Chem. Phys.*, 2017, **17**, 2009-2033.
- 68 H. Kim, Q. Zhang and J. Heo, Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ, *Atmos. Chem. Phys.*, 2018, **18**, 7149-7168.
- 69 K. Park, J. Park, S. Lee, H.-j. Cho and M. Kang, Real time measurement of chemical composition of submicrometer aerosols at urban Gwangju in Korea by aerosol mass spectrometer, *Atmos. Environ.*, 2012, **62**, 281-290.
- 70 J. Park, S. Lee, M. Kang, H.-j. Cho, K. Lee and K. Park, Seasonal characteristics of submicrometer organic aerosols in urban Gwangju, Korea using an aerosol mass spectrometer, *Atmos. Environ.*, 2013, **80**, 445-454.
- 71 H.-J. Cho, J. Kang, D. Kim, A. Seo, M. Park, H. Joo and K. Park, A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere, *Atmosphere*, 2018, **9**, 393.
- 72 K. Lee, J. Park, M. Kang, D. Kim, T. Batmunkh, M.-S. Bae and K. Park, Chemical Characteristics of Aerosols in Coastal and Urban Ambient Atmospheres, *Aerosol Air Qual. Res.*, 2017, **17**, 908-919.
- 73 T. Lee, J. Choi, G. Lee, J. Ahn, J. S. Park, S. A. Atwood, M. Schurman, Y. Choi, Y. Chung and J. L. Collett, Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer, *Atmos. Environ.*, 2015, 120, 297-306.
- 74 D. Topping, H. Coe, G. McFiggans, R. Burgess, J. Allan, M. R. Alfarra, K. Bower, T. W. Choularton, S. Decesari and M. C. Facchini, Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia, *Atmos. Environ.*, 2004, **38**, 2111-2123.
- 75 N. Takegawa, T. Miyakawa, Y. Kondo, J. L. Jimenez, Q. Zhang, D. R. Worsnop and M. Fukuda, Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer, *J. Geophys. Res.*, 2006, **111**, D11206.
- 76 T. Miyakawa, N. Takegawa and Y. Kondo, Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer, *J. Geophys. Res.*, 2008, **113**, D14304.
- 77 J.-H. Xing, K. Takahashi, A. Yabushita, T. Kinugawa, T. Nakayama, Y. Matsumi, K. Tonokura, A. Takami, T. Imamura, K. Sato, M. Kawasaki,

T. Hikida and A. Shimono, Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different Particle Mass Spectrometers, *Aerosol Sci. Technol.*, 2011, **45**, 315-326.

- 78 Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P. F. DeCarlo, D. Salcedo, T. Onasch, J. T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R. J. Griffin, J. Rautiainen, J. Y. Sun, Y. M. Zhang and D. R. Worsnop, Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, *Geophys. Res. Lett.*, 2007, 34, L13801.
- 79 A. Takami, T. Miyoshi, A. Shimono and S. Hatakeyama, Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period, *Atmos. Environ.*, 2005, **39**, 4913-4924.