Supplementary information

Peroxymonosulfate (PMS) activation on cobalt-doped TiO₂ nanotubes: Degradation of organics under dark and solar light-irradiated conditions

Jonghun Lim^{a,b} and Michael R. Hoffmann^a*

^a Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States.

^b Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

*Corresponding author.

E-mail: mrh@caltech.edu (M. R. H.)

Fig. S1. Phenol removal efficiencies in the Co-TNT/PMS system under solar light irradiation as a function of the Co concentration in Co-TNT. ([Phenol]₀ = 100 μ M; [PMS]₀ = 1 mM; [phosphate buffer]₀ = 3 vol %; pH_i = 7.0).

Fig. S2. The horizontal and cross-sectional SEM and HR-TEM images of (a-c) bare TNT and (d-f) Co-TNT.

Fig. S3. (a) XRD spectra (b) expanded XRD spectra of (101) diffraction peaks of bare TNT and Co-TNT.

Fig. S4. Ti 2p XPS spectra of bare- and Co-TNT.

Fig. S5. SEM-EDX images of Ti and Co within Co-TNT sample.

Fig. S6. Degradation of phenol on Co-TNT under various conditions ([Phenol]₀ = 100 μ M; [PMS]₀ = 1 mM; [phosphate buffer]₀ = 3 vol %; pH_i = 7.0).

Fig. S7. Degradation of phenol on Co-TNT in actual surface water (obtained from several different places) and wastewater under simulated solar light irradiation ([Phenol]₀ = 100 μ M; [PMS]₀ = 1 mM; pH_i = 7.0).

Fig. S8. Time profiles of H_2O_2 production and fluorescence emission intensity indicating the generation of 7-hydroxycoumarin (7-HC) as a coumarin-OH adduct in Co-TNT under the dark condition in the absence and presence of PMS. ([Coumarin]₀ = 1 mM (for 7-HC experiment); [MeOH]₀ = 100 µM (for H_2O_2 experiment); [PMS]₀ = 1 mM; [phosphate buffer]₀ = 3 vol %; pH_i = 7.0).

Fig. S9. Time profiles of H_2O_2 production in the Co-TNT/PMS system under simulated solar light irradiation in the absence and presence of PMS. ([MeOH]₀ = 100 μ M; [PMS]₀ = 1 mM; [phosphate buffer]₀ = 3 vol %; pH_i = 7.0).

Fig. S10. Time profiles of fluorescence 7-HC emission intensity with Co-TNT under simulated solar light irradiation in the presence of electron acceptors (*e.g.*, O₂, PMS, and Cr(VI)). ([Coumarin]₀ = 1 mM; [PMS]₀ = [Cr(VI)]₀ = 1 mM; [phosphate buffer]₀ = 3 vol %; pH_i = 7.0; air-equilibrated condition except for N₂-saturated condition).

Fig. S11. (a) XRD patterns and (b) Co 2p XPS spectra of Co-TNT before and after reaction.

Condition	Initial pH	Dissolved Co concentration in the solution (mg/L)
In the dark	рН 3	0.004
	рН 7	0.002
	рН 9	0.002
Under solar light	рН 3	0.004
	рН 7	0.004
	рН 9	0.002

Table S1. The effect of initial pH on Co leaching from Co-TNT under dark and solar light.

Scheme S1. Transformation of DMPO-SO₄^{•-} adducts into DMPO-OH adducts.