Supplementary Information

The Gut Barrier and the Fate of Engineered Nanomaterials: A View from Comparative Physiology

Meike van der Zande¹, Anita Jemec Kokalj², David J. Spurgeon³, Susana Loureiro⁴, Patrícia V. Silva⁴, Zahra Khodaparast⁴, Damjana Drobne², Nathaniel J. Clark⁷, Nico van den Brink⁵, Marta Baccaro⁵, Cornelis A.M. van Gestel⁶, Hans Bouwmeester¹,⁵, Richard D. Handy⁷*

¹Wageningen Food Safety Research part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
²University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
³UK Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
⁴University of Aveiro, Department of Biology and CESAM- Centre for Environmental and Marine Studies, 3830-193 Aveiro, Portugal
⁵Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
⁶Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1018 HV Amsterdam, The Netherlands
⁷School of Biological and Marine Sciences, University of Plymouth, United Kingdom.

*Corresponding author. Email: rhandy@plymouth.ac.uk
Supplementary Figure S1. Phylogenetic tree of the animals and test models commonly used in nanomaterial fate studies (scheme adapted from Sadava et al.1). Black stars represent traits leading to certain anatomical distinction. OECD technical guidance (TGs) were derived from Crane et al.2 Note, diploblastic: two embryonic cell layers; triploblastic: three embryonic cell layers; coelom is the body cavity.
References