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Text S1. Synthesis of the CMC coated nZVI (nZVIcmc)

Briefly, 30 g/L nZVI20 slurry (in 100 mL of 1 mM NaHCO3 solution) were mixed (100 rpm, 25 ± 

0.5 °C) with 15 g/L CMC solution (in 50 mL of 1 mM NaHCO3 solution) with pH adjusted to 9.5 

by NaOH. After 72 h of mixing by magnetic stirring, the surface coated nZVI20 was separated by 

centrifugation and was then freeze-dried.

Text S2. Analysis conditions of high performance size exclusion chromatography (HPSEC)

Ultrapure water and acetonitrile (80% : 20%) with 0.1 M NaCl were used as the mobile phase with 

a flow rate maintained at 1.0 mL/min. Before use, the mobile phase was vacuum-filtered through a 

0.45-µm membrane filter using an all-glass filtration apparatus. Sodium polystyrenesulfonate with 

different MWs were used as SEC MW standards. All standards and samples were measured at a 

detection wavelength of 254 nm. A calibration curve was constructed based on the linear 

relationship between the retention time corresponding to the highest peak and the lgMW. DOM 

MW values were determined from the chromatograms using the calibration equation.

Text S3. Fluorescence intensity integration

According to previous studies[1, 2], different types of organics have different excitation–emission 

wavelengths and the 3D EEM spectra can be divided into five regions: region I is related to 

tyrosine-like protein (Ex 200–250 nm, Em 250–330 nm), region II to tryptophan-like protein (Ex 

200–250 nm, Em 330–380 nm), region III to fulvic acid-like organics (Ex 200–250 nm, Em 380–

650 nm), region IV to soluble microbial by-product-like materials (Ex 250–450 nm, Em 250–380 

nm), and region V to humic acid-like organics (Ex 250–450 nm, Em 380–650 nm). By the 

deduction of the cumulative excitation–emission area in the blank, the fluorescence intensity 

integration for each region i (Φi,n) was calculated with Eq. (1) [1, 2]
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                                 (1)∅𝑖,𝑛 = ∑𝑒𝑥∑𝑒𝑚𝐼(𝜆𝑒𝑥𝜆𝑒𝑚)∆ 𝜆𝑒𝑥∆𝜆𝑒𝑚

where I (λexλem) is the fluorescence intensity at each excitation–emission wavelength pair; Δλex and 

Δλem are the excitation and emission wavelength increments (10 nm), respectively.

Table S1 FTIR peak assignments for DOM and nZVIs-adsorbed DOM

Peak position (cm−1)Band 
number HA HA-nZVIs FA FA-nZVIs

Assignments
Referenc

e

Band 1 2923 2923 2932 2921 Asymmetric CH stretching in –CH3 and 
–CH2– of aliphatic chains

[3]

Band 2 2854 2841 2841 2850 Symmetry CH stretching in –CH3 and
–CH2– of aliphatic chains

[3]

Band 3 - - 1709 - Protonated carboxylic C=O stretching [4,5-7]

Band 4 1586 1620 1587 1620 Aromatic C=C functional groups [6-9]

Band 5 1384 1381 - 1378 Symmetrical stretching of carboxyl 
functional groups complexed with iron

[7, 9]

Band 6 1514 Disappeared Aromatic C=C stretching and/or N-H 
deformation

[10, 11]

Band 7 1463 Disappeared C-H deformations in CH2 and CH3 groups [10, 11]

Band 8 1423 Disappeared C=O stretching vibrations [10, 11]

Band 9 1330 Disappeared C–H deformation [11, 12]
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Fig. S1 Total organic carbon (TOC) desorbed from different concentrations of bare nZVIs in 

the background solution (0.01 M NaCl) after equilibration for 48 h.
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Fig. S2 Time-dependent changes in TOC content of DOM solutions (25 mg/L) by treatment 

with different nZVIs for various time (1 g/L NPs, 0.01 M NaCl, pH = 6.5 ± 0.5, and T = 298 K).
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Fig. S3 (A) Changes in TOC content of DOM solutions (25 mg/L) against the 48 h adsorption 

by different concentrations of nZVIs; (B) desorbed TOC concentrations and the desorption 

percentages of nZVIs-adsorbed DOM after the desorption for 48 h in 0.01 M NaCl solutions 

(pH = 6.5 ±0.5 and T = 298 K).
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Fig. S4 Ultraviolet absorption spectra of different concentrations of CMC solutions.
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Fig. S5 Changes in UV254 of DOM solutions (25 mg/L) against the 48 h adsorption by various 

concentrations of nZVIs (0.01 M NaCl, pH = 6.5 ± 0.5, and T = 298 K).
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Fig. S6 Ultraviolet-visible absorbance spectra of DOM solutions before and after the 

treatment with different concentrations of nZVIs. Conditions: 0.01 M NaCl, pH = 6.5 ± 0.5, T 

= 298 K, and 48 h adsorption.
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Fig. S7 Molecular weight distributions of DOM solutions before and after the treatment with 

nZVIs at different concentrations (25 mg/L DOM, 0.01 M NaCl, T = 298 K, and 48 h 

adsorption).
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Fig. S8 Changes in SUVA254 (A) and E4/E6 (B) of DOM against the 48 h adsorption by 

nZVIs at different concentrations (25 mg/L DOM, 0.01 M NaCl, pH=6.8 ±0.5, and T=298 K).
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Fig. S9 Fluorescence intensity integration for each 3D EEM region of DOM solutions before 

and after the 48-h adsorption by nZVIs. Conditions: 2 g/L nZVIs, 25 mg/L DOM, 0.01 M 

NaCl, and T = 298 K.
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Fig. S10 Molecular weight distributions of DOM solutions detected by UV and fluorescence 

(FR) detectors.
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Fig. S11 Changes in MW distributions of DOM fluorophores against the 48 h adsorption of 

nZVIs at different concentrations (25 mg/L DOM, 0.01 M NaCl, pH=6.8 ±0.5, and T=298 K).

A

B

C

D

E

F



S12

0 2 4 6 8 10
400

800

1200

1600

2000
 nZVI20-BG
 nZVI20-HA
 nZVI20-FA

H
yd

ro
dy

na
m

ic
 d

ia
m

et
er

 (n
m

)

Time (min)
0 2 4 6 8 10

400

800

1200

1600

2000

H
yd

ro
dy

na
m

ic
 d

ia
m

et
er

 (n
m

)

 nZVI100-BG
 nZVI100-HA
 nZVI100-FA

Time (min)

0 2 4 6 8 10
400

800

1200

1600

2000

H
yd

ro
dy

na
m

ic
 d

ia
m

et
er

 (n
m

)

 nZVIcmc-BG
 nZVIcmc-HA
 nZVIcmc-FA

Time (min)

Fig. S12 Time-dependent variations in hydrodynamic diameters of 200 mg/L nZVIs in 

background (BG) and DOM solutions (25 mg/L DOM, 0.01 M NaCl, pH = 6.5 ± 0.5, and T = 

298 K).
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Fig. S13 XPS spectra of Fe 2p in nZVIs before (fresh) and after the aging in the background 

solution (BG) or DOM solutions for 48 h. The peak located at around 709.5 eV is ascribed to 

the binding energies of Fe 2p3/2 orbital from Fe2+ in Fe3O4, the peaks around 711.6 eV and 

713.3 eV are assigned to the binding energies of 2p3/2 of Fe3+ in Fe2O3/Fe3O4, and the shoulder 

at 719.6 eV is associated with Fe 2p1/2 orbital in Fe0[13-16]. The black lines are the measured 

XPS spectra and the red lines are the fits. 
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Fig. S15 Calibration curves between the absorbance at 512 nm and Fe2+ concentrations.
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Fig. S17 Changes in the TOC content of HA solution (25 mg/L) against the UV irradiation 

time with or without 100 μmol/L Fe(NO3)3.
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