Supporting Information

One-pot Hydrodeoxygenation (HDO) of Lignin Monomers to C9 Hydrocarbons co-catalysed by Ru/C and Nb₂O₅

Simin Lia,b, Baoyuan Liua, Julianne Truonga, Zhongyang Luo*,b, Peter C. Ford*,a, Mahdi M. Abu-Omar*,a

^a Department of Chemistry & Biochemistry, University of California, Santa Barbara, Building 232, Santa Barbara, California, 93106-9510, United States

^b State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.

Contents

Tables: 3

Table S-1. Time profile of co-catalyst system.

Table S-2. Catalyst recyclability test.

Table S-3. Reaction with cyclohexanol feedstock over Ru/C or Nb₂O₅ alone.

Figures: 9

Figure S-1. XRD pattern (left) and XPS analysis (right) of Nb₂O₅ catalyst.

Figure S-2. SEM (a) and TEM (b) images of Nb₂O₅ catalyst.

Figure S-3. NH₃-TPD profile of different Nb₂O₅ catlaysts.

Figure S-4. ¹H NMR in the aliphatic region of the products obtained after DHE reactions in $D_2O/methanol-d_4$, $D_2O/MeOH$ and $H_2O/MeOH$.

Figure S-5. 2H NMR spectrum of products obtained from the reaction of DHE in D_2O and methanol- d_4 .

Figure S-6. GC-MS of propyl benzene obtained as a product from the reaction of DHE in D_2O and methanol- d_4 .

Figure S-7. ²H NMR spectra and GC-MS of p-cresol after reaction with Nb₂O₅ in D₂O.

Figure S-8. ²H NMR spectrum of the products from the catalysed reaction of DHE with D_2 in H_2O and MeOH.

Figure S-9. GC-TCD analysis of a typical reaction in the co-catalyst system.

Schemes: 1

Scheme S-1. The mechanism of p-cresol reacting with Nb_2O_5 in D_2O .

Tables

Table S-1. Time profile of co-catalyst system

Entry	Time (h)	Conv. (%) -	Product Distribution (%)					
			1	2	3	4	5	
1 ^a	2	14	-	-	-	100	-	
2 ^b	2	41	-	-	-	18	82	
3	2	36	4	5.9	9.4	65	16	
4	4	100	35	33	31	-	-	
5	8	100	94	6.4	-	-	-	
6 ^c	12	100	100	-	-	-	-	

Reaction condition: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, H₂O 12 mL, methanol 0.8 mL, P(H₂) = 6 bar, 250 $^{\circ}$ C, 12h. ^a Reaction with Ru/C only. ^b Reaction with Nb₂O₅ only. ^c The same experiment as entry 4 in Table 2.

Table S-2. Catalyst recyclability test

Run	Conv. (%)	Product Distribution (%)					Material balance
		1	2	3	4	5	(mol%)
1	100	81	19	-	-	-	92
2	100	81	19	-	-	-	94
3	78.6	14	10	12	56	8	94
4 ^a	56.3	27	4	18	46	6	88
5 ^b	47	17	3	21	55	3	88
6 ^c	80	31	4	7	38	20	90

Reaction condition: DHE 1 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, H₂O 12 mL, methanol 1 mL, P(H₂) = 6 bar, 250 °C, 16 h. Unless noted, the catalyst was washed using ethanol twice, dried in vacuum chamber at room temperature for 24 h and in oven at 120 °C for 1 h before using for next run. ^a Catalyst was calcinated under N₂ at 450 °C for another 45 min before use. ^b Catalyst was reduced under H₂(5%)/Ar at 350 °C for another 3 h before use. ^c Fresh Nb₂O₅ 0.1 g was added into the reused catalyst mixture (0.2 g left after five runs) for the Run 6.

Table S-3. Reaction with cyclohexanol feedstock over Ru/C or Nb₂O₅ alone.

Entry	Substrate	Conv. (%)	Product Distribution (%)		
	Substrate	COIIV. (%)	1	other	
1	OH OH O	99	100	0	
2		62	14.5	85.5	

Reaction condition: propyl cyclohexanol and 2-methoxy-4-propycyclohexanol mixture (1:1) 0.4 mL, Ru/C 100 mg (entry 1) or Nb₂O₅ 200 mg (entry 2), H₂O 12 mL, methanol 0.8 mL, initial P(H₂) = 6 bar, 250 $^{\circ}$ C, 12 h.

Figures and Schemes

Figure S-1. XRD pattern (left) and XPS analysis (right) of Nb₂O₅ catalyst. According to XRD pattern of Nb₂O₅ (left), only one broad diffraction peak located at about 22.7° is observed, which corresponds to the facet (001). No sharp peak is observed, which suggests that the synthesized Nb₂O₅ has the amorphous structure. XPS analysis was also performed to obtain the oxidation state (right). The catalyst shows the typical Nb $3d_{3/2}$ (209.9 eV) and Nb $3d_{5/2}$ (207.1 eV) peaks of Nb⁵⁺. ¹ No other peaks were obtained.

Figure S-2. SEM (a) and TEM (b) images of Nb_2O_5 catalyst. According to the SEM image, the bulk-shape particles of synthesized Nb_2O_5 are not the crystalline form. Numerous pores are evenly distributed on the top and cross section of the catalyst evenly. From the TEM image, the inner pores of Nb_2O_5 can be observed more clearly. The pores are not regular but has relatively consistent pore size that is around 5 nm. Combining with the XRD result, the synthesized Nb_2O_5 is an amorphous mesoporous solid.

Figure S-3. NH₃-TPD profiles of different Nb₂O₅ catalysts. The Nb₂O₅ was prepared by using niobium (V) chloride and CTAB in a Teflon lined autoclave and calcinated at 450 $^{\circ}$ C and 600 $^{\circ}$ C, respectively. Nb₂O₅ purchased from Sigma-Aldrich used as is. SiO₂ has no acid sites and was analyzed for comparison. 0.2600 g Nb₂O₅ prepared at 450 $^{\circ}$ C, 0.1964 g Nb₂O₅ prepared at 600 $^{\circ}$ C, 0.2210 g purchased Nb₂O₅, and 0.2173 g SiO₂ samples were loaded for NH₃-TPD analysis. The ammonia adsorption was determined in term of mmol of NH₃ per gram of loaded sample.

The acid property of Nb_2O_5 catalyst is sensitive to the calcination temperature. According to the figure, Nb_2O_5 calcinated at $450\,^{\circ}C$ adsorbs the largest amount of ammonia among other samples which indicates the $450\,^{\circ}C$ Nb_2O_5 has the most abundant acid sites. When the calcination temperature increased to $600\,^{\circ}C$, the acid sites reduced dramatically. And the purchased Nb_2O_5 from Sigma-Aldrich has been reported to be calcinated at $1000\,^{\circ}C$ almost has no acid sites comparing to $SiO_2.^2$ According to our results, abundant acid sites of Nb_2O_5 are vital to our HDO reactions. From entries 1 and 2 in Table 3, Nb_2O_5 calcinated at $450\,^{\circ}C$ promotes the hydrolysis to catechol (5) and dehydroxylation to phenol (4) but the purchased Nb_2O_5 shows no activity.

Figure S-4. ¹H NMR in the aliphatic region of the products obtained after DHE reactions in D₂O/methanol-d₄ (top, entry 4 in Table 4) D₂O/MeOH (middle, entry 5 in Table 4) and H₂O/MeOH (bottom, entry 2 in Table 4). Conditions: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, water 12 mL, methanol 0.8 mL, purged with H₂ and vented to P(H₂) = 1 bar, 250 °C, 12 h reaction time. For the entry 4 in Table 4 (top), the reaction time was 24 h; for the entry 1 in Table 4 (bottom), 0.4 mL MeOH was used.

Figure S-5. ²H NMR spectrum of products obtained from the reaction of DHE in D_2O and methanol- d_4 . Conditions: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, D₂O 12 mL, methanol- d_4 0.8 mL, purged with H₂ and vented to P(H₂) = 1 bar, 250 °C, 24 h reaction time.

Figure S-6. GC-MS of propyl benzene obtained from the reaction of DHE in D_2O and methanol- d_4 . Conditions: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, D₂O 12 mL, methanol- d_4 0.8 mL, purged with H₂ and vented to P(H₂) = 1 bar, 250 °C, 24 h reaction time.

Figure S-7. ²H NMR (above) and GC-MS (bottom) spectra of p-cresol after reaction with Nb₂O₅ in D₂O. Conditions: p-cresol 0.2 mL, Nb₂O₅ 200 mg, D₂O 12 mL, P(H₂) = 6 bar, 250 °C, 12 h reaction time. No HDO product was observed after reaction. However, the molecular weight of p-cresol was detected to be M/e 109, 110, and 111 by GC-MS. This suggests that up to three aromatic hydrogens on p-cresol exchanged with the solvent D₂O during the reaction. The aromatic deuteriums detected upon recording the ²H NMR spectrum of the p-cresol after reaction, can be explained by the tautomerization mechanism (Scheme S-1).

Scheme S-1. The mechanism of p-cresol reaction with Nb_2O_5 in D_2O . The deuterium from D_2O could transfer to aromatic ring through tautomerization catalysed by Nb_2O_5 . This Scheme shows the possible structures and molecular weight of p-cresol after isotopic reaction with Nb_2O_5 in D_2O in agreement with the GC/MS and 2H NMR results.

Figure S-8. ²H NMR spectrum of the products from the catalysed reaction of DHE with D_2 in H_2O and MeOH. Conditions: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, H_2O 12 mL, MeOH 0.8 mL, $P(D_2)$ at RT = 6 bar, 250 °C, 24 h reaction time.

Figure S-9. GC-TCD analysis of a typical reaction in the co-catalyst system (entry 3, Table 1). The gas phase products were collected after reaction (left). A standard CO₂ sample was obtained and analyzed for peak assignment by its retention time at 28.2 to 28. 5 min (right). Reaction condition: DHE 0.2 mL, Ru/C 100 mg, Nb₂O₅ 200 mg, H₂O 12 mL, methanol 0.8 mL, P(H₂) = 1 bar, 250 °C, 12 h. CO₂ gas was detected as the main product in gas phase after the HDO reaction. It was evident that catalytic reforming of methanol occurs in this co-catalyst system.

References

- 1. Özer, N.; Rubin, M. D.; Lampert, C. M., Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison. *Solar Energy Materials and Solar Cells* **1996**, *40* (4), 285-296.
- 2. Chan, X. J.; Pu, T. C.; Chen, X. Y.; James, A.; Lee, J.; Parise, J. B.; Kim, D. H.; Kim, T., Effect of niobium oxide phase on the furfuryl alcohol dehydration. *Catal Commun* **2017**, *97*, 65-69.