Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2020

1 Supplementary information

2

3 Non-photosynthetic CO₂ bio-mitigation by *Escherichia coli*

- 4 harboring CBB genes[†]
- 5

6 Soo Youn Lee^{‡a}, Young Su Kim^{‡b}, Woo-Ri Shin^{‡c}, Jaeyoung Yu^b, Jiye Lee^a,
7 Sangmin Lee^a, Yang-Hoon Kim^{*c} and Jiho Min^{*b}

8

9 ^a Gwangju Bio/Energy R&D Centre, Korea Institute of Energy Research, Gwangju 61003,

- 10 Korea. E-mail: syl@kier.re.kr, jiye.lee@kier.re.kr, silverlsm@kier.re.kr
- 11 ^b Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University,
- 12 Jeonju 54896, Korea. E-mail: jihomin@jbnu.ac.kr
- 13 ^c School of Biological Sciences, Chungbuk National University, Cheongju 28644, Korea. E-
- 14 *mail: kyh@chungbuk.ac.kr*

15

- 16 * Correspondence: kyh@chungbuk.ac.kr; jihomin@jbnu.ac.kr
- 17 [‡]These authors contributed equally.
- 18 †Electronic supplementary information (ESI) available. See DOI: 00.0000/000000000
- 19

20 List of contents

- 21 Table S1. Nucleotide lengths of the rCBB genes and their molecular weights after translation
- 22 Table S2. Bacterial strains and plasmids used in this study
- 23 Table S3. Oligonucleotide used in this study
- 24 Table S4. Calculation of the specific CO₂-fixtation rate of *E. coli* expressing whole rCBB
- 25 (CBB_{I/II}) after 24 h of anaerobic cultivation in 5% CO_2
- 26 Fig. S1. Schematic diagram of the plasmids.
- 27 Fig. S2. Growth profiles of the *E. coli* control (Mock) and *E. coli* expressing CBB_I and CBB_{II}.
- **Fig. S3.** Relative CO₂ release during bacterial cultivation.
- 29 Fig. S4. Transmission electron microscope images of bacteria.
- 30 Fig. S5. Schematic illustration of the bioelectrochemical reactor for the electrochemical
- 31 analysis of *E. coli* strains.
- 32 Fig. S6. Cyclic voltammograms of E. coli control (Mock, black lines) and E. coli expressing
- 33 whole rCBB (CBB_I/_{II}, red lines)
- 34 Fig. S7. Photograph of the CO₂ bio-mitigation process in this work.

Operon	Gene	Nucleotide length (bps)	Molecular weight of protein (kDa)
$cbb_{\rm I}$	cbbF	1,002	36.7
	prkA	1,080	39.6
	cfxA	837	30.7
	cbbL	1,461	53.6
	cbbS	390	14.3
cbb_{II}	fbpB	996	36.5
	prkB	879	32.2
	tklB	1,974	72.4
	gapB	1,002	36.7
	cfxB	1,065	39.1
	rbpL	1,380	50.6

Table S1. Nucleotide lengths of the rCBB genes and their molecular weights after translation

5 Table S2. Bacterial strains and plasmids used in this study

Strains and plasmids	Characteristics ^a	Source or reference
Strains		
R. sphaeroides 2.4.1	Wild-type	KCTC 1434
S. cerevisiae s2805	Wild-type, MATa pep4::HIS3 pro 1-8.6 can 1 his3-2000 ura3-52	Korea Research Institute of Bioscience and Biotechnology,
		Korea
<i>E. coli</i> BL21	$F^{-} ompT hsdS_B (r_B^{-} m_B^{-}) gal dcm (DE3)$	Novagen, Madison, WI, USA
E. coli control	<i>E. coli</i> BL21, pET-21a and pET-28b (Mock strain)	This study
E. coli (CBB _{I/II})	<i>E. coli</i> BL21, pMBTLY-I/pMBTLY-II (recombinant strain)	This study
<i>E. coli</i> (CBB _I)	<i>E. coli</i> BL21, pMBTLY-I (recombinant strain)	This study
E. coli (CBB _{II})	E. coli BL21, pMBTLY-II (recombinant strain)	This study
Plasmids		
pET-28b	Km ^R , IPTG inducible T7 polymerase dependent expression vector	Novagen, Madison, WI, USA
pET-21a	Am ^R , IPTG inducible T7 polymerase dependent expression vector	Novagen, Madison, WI, USA
pMBTLY-I	Km^{R} , pET-28b derivative carrying <i>cbbF-cbbS</i> gene (<i>cbb</i> ₁)	This study
pMBTLY-II	Am ^R , pET-21a derivative carrying <i>fbpB-rbpL</i> gene (<i>cbb</i> _{II})	This study

6 ^a Km, kanamycin; Am, ampicillin

Oligo name ^a	Target gene	Sequence (5'-3') ^b	Note ^b
<i>cbb</i> _I operon			
cbbI-1F	cbbF	taa <u>tctagag</u> tgaagccctttcccacc	XbaI
cbbI-1R	cbbF	taa <u>catatg</u> tcagctccggaacaggcc	NheI
cbbI-2F	prkA-cfxA	gggcatatgagcaagaagcatcccatc	NheI
cbbI-2R	prkA-cfxA	taagctagctcaggcggctttggcggt	NdeI
cbbI-3F	cbbL-cbbS	tttgctagcatggataccaacaccacc	NdeI
cbbI-3R	cbbL-cbbS	aataagctttcagcggacgatgctgtg	HindIII
$cbb_{\rm II}$ operon			
cbbII-1F	fbpB-prkB	taatctagaatggccatcgagctggaggac	XbaI
cbbII-1R	fbpB-prkB	taa <u>catatg</u> tctccgtctgtctgcgc	NheI
cbbII-2F	tklB-gapB	tta <u>catatg</u> aaggacattggagccgcg	NheI
cbbII-2R	tklB-gapB	att <u>gctagc</u> tcagagaagccggcccat	NdeI
cbbII-3F	cfxB-rbpL	aaggctagcatggcactcatcacgctt	NdeI
cbbII-3R	cfxB-rbpL	aat <u>aagett</u> tcaggccgcgcgatgcag	HindIII

1 Table S3. Oligonucleotide used in this study

2 ^a F, forward; R, reverse

3 ^b Underline, sites for restriction enzymes

5

6

7 **Table S4.** Calculation of the specific CO_2 -fixtation rate of *E. coli* expressing whole rCBB 8 (CBB_{I/II}) after 24 h of anaerobic cultivation in 5% CO₂ as only the carbon source ^a

Consumed CO ₂	CO ₂ -fixation rate	Biomass	Specific CO ₂ -fixation rate
(mmol L ⁻¹)	(mg L ⁻¹ h ⁻¹)	(g DCW L ⁻¹)	(mg g DCW h ⁻¹) ^b
21.4 ± 0.2	39.2 ± 0.3	0.5 ± 0.0	78.4 ± 0.6

9 ^a Gas composition was $CO_2/H_2/Ar$ (5:60:35) in 20 mL of M9 minimal medium

10 ^b Calculated by the CO₂-fixation rate in the unit of mg L^{-1} h⁻¹ divided by the biomass concentration in

11 the g DCW L^{-1}

12

⁴

9 Fig. S1. Schematic diagram of the plasmids. (A) The genes on *cbb*_I operon (*cbbF*, *prkA*, *cfxA*, *cbbL* and *cbbS*) from *R. sphaeroides* 2.4.1 were cloned into cloned into pET-28b for the
inducible expression of CBB_I enzymes in *E. coli* BL21 (DE3). (B) The genes on *cbb*_{II} operon
(*fbpB*, *prkB*, *tklB*, *gapB*, *cfxB* and *rbpL*) from *R. sphaeroides* 2.4.1 were cloned into cloned into cloned into
pET-21a for the inducible expression of CBB_{II} enzymes in *E. coli* BL21 (DE3).

- 6 Heterogeneous expressions of whole rCBB (CBB_I/_{II}), CBB_I-only or CBB_{II}-only in E. coli were
- 7 induced by supplementation of IPTG (1 mM) at 3-h after inoculation (arrow).

Fig. S3. Relative CO₂ release during bacterial cultivation. (A) *E. coli* control (Mock). (B) *E.* coli expressing whole rCBB (CBB_I/_{II}). (C) E. coli expressing CBB_I-only. (D) E. coli expressing CBB_{II}-only. Opened symbols indicate non-induced cells. Closed symbols indicate 1 mM IPTG-supplemented cells (I) for overexpression of target genes. The ratio of relative CO₂ release was calculated that the peak area of CO_2 in gas chromatogram at T_0 in each case was 1.

2 Fig. S4. Transmission electron microscope images of bacteria. Black arrows indicate the
3 periplasmic spaces. White arrows indicate inclusion bodies.

4 Fig. S5. Schematic illustration of the bioelectrochemical reactor for the electrochemical
5 analysis of the *E. coli* strains. Bacterial cells attached to the glass carbon electrode (GCE) as
6 the working electrode (WE). The reference (RE) and counter (CE) were silver/silver chloride
7 (Ag/AgCl, NaCl saturated) and platinum wire, respectively. 0.1 mM neutral red was suspended
8 to mediate electron transfer from WE to bacteria. M9 minimal medium with 0.4 g L⁻¹ glucose
9 was used as electrolyte. Electrochemical experiments, cyclic voltammetry and
10 chronoamperometry were performed at 37 °C and 100 rpm.

Fig. S6. Cyclic voltammograms of the *E. coli* control (Mock, black lines) and *E. coli* expressing 5 whole rCBB (CBB_I/_{II}, red lines) without (dotted lines) and with 0.1 mM neutral red (NR) before 6 conducting chronoamperometry experiment (T(i, 0) in Figure 5a). 1 mM IPTG was 7 supplemented with NR. Inset, NR only (blue line). Scan rate, 10 mV s⁻¹.

Fig. S7. Photograph of the CO_2 bio-mitigation process in this work. Double vessels were linked 7 with gas-line for CO_2 recycling. Left, culture vessel for yeast fermentation; right, culture vessel 8 for *E. coli* expressing whole rCBB (CBB_I/_{II}) growth.