Construction of benzothiophene fused pyrrolidone in water via
catalyst-free process and mechanism study

Jinhui Shen, a Aimin Yu, *a Lei Zhang *b,c and Xiangtai Meng *a

a Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China E-mail: aiminyu@tjut.edu.cn, mengxiangtai23@mail.nankai.edu.cn

b Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University, Tianjin 300384, P.R. China E-mail: zhanglei-chem@tcu.edu.cn

Contents

1) General information ... S2
2) The structure of thioaurones 1 and substituted amine 3…………. S2
3) Synthetic procedure of 1g ... S2
4) Table S1 Results of screening the reaction time S3
5) General procedure for the synthesis of 4 and 6 S3
6) Synthetic procedure for 5a, 7 and 8 S3
7) Characterization of all new compounds S4
8) NMR spectra of all new compounds S18
9) Computational details and archive entries S63
10) References ... S83
11) X-ray crystal structures .. S84
1. General information and materials

All reactions were performed under Ar atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers (Aldrich, TCI or Alfa Aesar) and used without further purification. All solvents were purified and dried according to standard methods prior to use. TLC monitored all reactions with silica gel-coated plates. Flash column chromatography was performed using 200-300 mesh silica gel. \(^1\)H- and \(^{13}\)C NMR spectra were recorded at ambient temperature on Bruker 400 instruments. All spectra were referenced to CDCl\(_3\) (\(^1\)H \(\delta\) 7.26 ppm and \(^{13}\)C NMR \(\delta\) 77.00 ppm). \(^{19}\)F NMR spectrum was recorded on Bruker 400 (376 MHz) spectrometers with CFCl\(_3\) as external standard. HRMS were obtained on Waters Xevo Q-TOF MS with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. IR were measured on a Perkin-Elmer 983G apparatus. Compound 1 was synthesized according to the reported method\(^{[1]}\) [2].

2. The structure of thioisatin 1 substituted amine 3

\[
\begin{align*}
1a & \quad 1b & \quad 1c & \quad 1d & \quad 1e \\
\quad & \quad & \quad & \quad & \\
1f & \quad 1g & \quad 1h & \quad 1i & \quad 1j
\end{align*}
\]

Substituted amine 3

\[
\begin{align*}
3a & \quad 3b & \quad 3c & \quad 3d & \quad 3e \\
3f & \quad & \quad & \quad & \\
3g & \quad 3h & \quad 3i & \quad 3j & \quad 3k \\
3l & \quad & \quad & \quad & \\
3m & \quad 3n & \quad 3o & \quad 3p & \quad 3q \\
3r & \quad & \quad & \quad & \\
3s & \quad 3t & \quad 3u & \quad 3v & \\
& \quad & \quad & \quad &
\end{align*}
\]

3. Synthetic procedure of 1g
To a NaOH (10%) (15 mL) solution of S-I (1.56 g, 8.12 mmol) was added \(N,N\)-dimethyl-4-nitrosoaniline (1.00 g, 6.66 mmol) in 5% aqueous hydrochloric acid (6 mL) at 60 °C. The reaction mixture was stirred at 60 °C for 1 h. After the reaction complete, the resulting purple black S-II was filtered off and washed successively with cold water, dilute hydrochloric acid, and water. It was used in the next stage without further purification.

S-II (obtained in the above step) was added to a HCl (15%) (40 mL). The resulting mixture was refluxed for 4 h. After cooling to room temperature, the mixture was filtered off. The resulting solid was added to \(Na_2CO_3\) (50%) (50 mL) solution. The mixture was refluxed for 0.5 h. The solution was filtered off, acidified with HCl. The resulting precipitate was filtered off, washed with water. The desired product was obtained as yellow solid (40 mg, 2%).

4. Table S1 Results of screening the reaction time

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>t/°C</th>
<th>Time/h</th>
<th>Yield 4a/%</th>
<th>Yield 5a/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2O</td>
<td>80</td>
<td>8</td>
<td>55</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>H2O</td>
<td>80</td>
<td>12</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>H2O</td>
<td>80</td>
<td>16</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>H2O</td>
<td>100</td>
<td>8</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>H2O</td>
<td>100</td>
<td>12</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>H2O</td>
<td>100</td>
<td>16</td>
<td>72</td>
<td>0</td>
</tr>
</tbody>
</table>

5. General procedure for the synthesis of 4 and 6

4a as an example

Under Ar atmosphere, 1a (53.46 mg, 0.30 mmol) and 2a (123.44 mg, 0.75 mmol) were dissolved in H2O 2 mL. To the above reaction mixture, 3a (96.44 mg, 0.90 mmol) was added. The resulting reaction mixture was stirred at 120 °C for 4 h. After the reaction complete (monitored by TLC), the reaction mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 and evaporated under vacuum. The reside was purified by column chromatography (ethyl acetate: petroleum ether = 1:3) to give 4a (103 mg, 89%) as white solid.

6d as an example

Under Ar atmosphere, to a H2O (2 mL) solution of 1a (53.46 mg, 0.30 mmol) and 2a (123.44 mg, 0.75 mmol) was added 3p (65.83 mg, 0.90 mmol). The resulting reaction mixture was stirred at 120 °C for 5 h. After the reaction complete (monitored by TLC), the reaction mixture was extracted with ethylacetate (2 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 and evaporated under vacuum. The reside was purified by column chromatography (ethyl acetate: petroleum ether = 1:3) to give 6d (50 mg, 58%) as white solid.

6. Synthetic procedure for 5a, 7 and 8

Under Ar atmosphere, to a H2O (2 mL) solution of 1a (53.46 mg, 0.30 mmol) and 2a (123.44 mg, 0.75 mmol) was added 3a (96.44 mg, 0.90 mmol). The resulting reaction mixture was stirred at 120 °C for 20 min. After the reaction complete (monitored by TLC), the reaction mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 and evaporated under vacuum. The reside was purified by column chromatography (ethyl acetate: petroleum ether = 1:3) to give 5a (63 mg, 50%) as white solid.

Under Ar atmosphere, 4a (79.09 mg, 0.20 mmol) and PTSA-H2O (57.06 mg, 0.30 mmol) were dissolved in toluene 2 mL. The resulting reaction mixture was stirred at 110 °C for 27 min. After the
reaction complete (monitored by TLC), the reaction mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous Mg\(_2\)SO\(_4\) and evaporated under vacuum. The residue was purified by column chromatography (ethyl acetate: petroleum ether = 1:5) to give 7 (53 mg, 50%) as yellow solid.

Under Ar atmosphere, 4a (79.09 mg, 0.20 mmol) and \(m\)-CPBA (75.93 mg 0.44 mmol) were dissolved in CH\(_2\)Cl\(_2\) 2 mL. The resulting reaction mixture was stirred for 17 min at room temperature. After the reaction complete (monitored by TLC), the reaction mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over anhydrous Mg\(_2\)SO\(_4\) and evaporated under vacuum. The residue was purified by column chromatography (ethyl acetate: petroleum ether = 1:5) to give 8 (62 mg, 73%) as white solid.

7. Characterization of all new compounds

5-acetylbenzo[b]thiophene-2,3-dione (1g)
Yellow solid: 40 mg (yield 2%); mp 103-105 °C; IR (KBr) 1735, 1713, 1669 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.35 (d, \(J = 1.6\) Hz, 1H), 8.30 (dd, \(J = 8.4, 2.0\) Hz, 1H), 7.57 (d, \(J = 8.2\) Hz, 1H), 2.65 (s, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 195.5, 184.6, 181.3, 147.4, 137.3, 136.4, 127.9, 126.2, 124.4, 26.6 ppm. HRMS (ESI-TOF) \(m/z\) [M + Na]\(^+\) calcd for C\(_{10}\)H\(_6\)O\(_3\)SNa 228.9930, found 228.9932.

Ethyl (E)-2-(2-benzyl-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4a)
White solid: 103 mg (yield 89%); mp 183-185 °C; IR (KBr) 3364, 2962, 1745, 1680, 1611, 1030, 956, 811, 734 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.50 (s, 1H), 7.26 – 7.35 (m, 3H), 7.08 – 7.19 (m, 3H), 6.99 (d, \(J = 8.0\) Hz, 1H), 5.45 (d, \(J = 1.6\) Hz, 1H), 5.25 (d, \(J = 1.2\) Hz, 1H), 4.67 – 4.83 (q, \(J = 14.8\) Hz 2H), 3.99 – 4.16 (m, 2H), 2.33 (s, 3H), 1.23 (t, \(J = 7.0\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.5, 166.7, 157.3, 137.8, 136.2, 135.2, 133.7, 132.2, 132.0, 126.9, 126.3, 121.1, 95.5, 85.3, 76.7, 60.5, 54.7, 44.9, 21.0, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{22}\)NO\(_4\)S 396.1264, found 396.1268.

Ethyl (E)-2-(8b-hydroxy-7-methyl-2-(4-methylbenzyl)-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4b)
White solid: 80 mg (yield 65%); mp 180-182 °C; IR (KBr) 3413, 2953, 1748, 1680, 1622, 1155, 829, 813, 662 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.50 (s, 1H), 7.08 – 7.16 (m, 3H), 7.03 (d, \(J = 8.0\) Hz, 2H), 6.98 (d, \(J = 8.0\) Hz, 1H), 5.46 (d, \(J = 1.6\) Hz, 1H), 5.25 (d, \(J = 1.2\) Hz, 1H), 4.71 (q, \(J = 14.3\) Hz 2H), 3.99 – 4.16 (m, 2H), 2.33 (s, 3H), 2.33 (s, 3H), 1.23 (t, \(J = 7.0\) Hz, 3H) ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{22}\)NO\(_4\)S 396.1264, found 396.1268.
3.98 – 4.14 (m, 2H), 3.80 (s, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 1.23 (t, \(J = 7.2\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.6, 166.9, 157.6, 137.69, 137.66, 136.3, 135.1, 132.1, 130.7, 129.6, 126.9, 126.4, 121.1, 95.3, 85.3, 60.5, 54.7, 44.7, 21.1, 21.0, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{23}\)H\(_{24}\)NO\(_4\)S 410.1421, found 410.1423.

![Chemical Structure of Ethyl (E)-2-(8b-hydroxy-2-(4-methoxybenzyl)-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4c)](image)

Ethyl (E)-2-(8b-hydroxy-2-(4-methoxybenzyl)-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4c)

White solid: 70 mg (yield 55%); mp 155-157 °C; IR (KBr) 3392, 2958, 1754, 1679, 1620, 1075, 814, 769, 664 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.50 (s, 1H), 7.12 (d, \(J = 8.0\) Hz, 1H), 7.08 (d, \(J = 8.8\) Hz, 2H), 6.97 (d, \(J = 8.0\) Hz, 1H), 6.81 (d, \(J = 8.4\) Hz, 2H), 5.43 (d, \(J = 1.2\) Hz, 1H), 5.27 (d, \(J = 1.2\) Hz, 1H), 4.67 (q, \(J = 14.9\) Hz, 2H), 3.99 – 4.15 (m, 2H), 3.87 – 3.96 (m, 1H), 3.76 (s, 2H), 2.33 (s, 3H), 1.23 (t, \(J = 7.0\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.6, 166.8, 159.2, 157.5, 137.7, 136.3, 135.1, 132.1, 128.4, 126.3, 125.8, 121.1, 114.3, 95.3, 85.3, 60.5, 55.3, 54.7, 44.4, 21.0, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{23}\)H\(_{24}\)NO\(_5\)S 426.1370, found 426.1370.

![Chemical Structure of Ethyl (E)-2-(2-(4-fluorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4d)](image)

Ethyl (E)-2-(2-(4-fluorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4d)

White solid: 96 mg (yield 77%); mp 181-183 °C; IR (KBr) 3404, 2985, 1746, 1667, 1619, 1381, 839, 811, 664 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.49 (s, 1H), 7.08 – 7.17 (m, 3H), 6.92 – 7.03 (m, 3H), 5.46 (d, \(J = 1.6\) Hz, 1H), 5.22 (d, \(J = 1.2\) Hz, 1H), 4.70 (q, \(J = 11.5\) Hz, 2H), 3.98 – 4.15 (m, 3H), 3.88 (s, 1H), 2.33 (s, 3H), 1.23 (t, \(J = 7.2\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.22, 164.42, 160.07 (d, \(J = 245.2\)Hz), 155.0, 135.4, 129.9, 127.23, 127.19, 126.5, 126.4, 124.1, 118.9, 113.7 (d, \(J = 21.6\)Hz), 113.8, 113.6, 93.1, 83.1, 58.3, 52.4, 41.9, 18.7 ppm. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -113.88 – -113.97 (m) ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{21}\)FNO\(_4\)S 414.1170, found 414.1172.

![Chemical Structure of Ethyl (E)-2-(2-(4-chlorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4e)](image)

Ethyl (E)-2-(2-(4-chlorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3\(H\)-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4e)

White solid: 106 mg (yield 82%); mp 180-182 °C; IR (KBr) 3387, 2982, 1749, 1680, 1625, 1091, 953, 832, 655 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.49 (s, 1H), 7.27 (s, 1H), 7.25 (s, 1H), 7.10 – 7.16 (m, 2H), 7.07 (d, \(J = 8.4\) Hz, 2H), 6.97 (d, \(J = 8.0\) Hz, 1H), 5.47 (d, \(J = 1.2\) Hz, 1H), 5.18 (d, \(J = 1.2\) Hz, 1H), 4.70 (s, 2H), 3.94 – 4.12 (m, 3H), 2.32 (s, 3H), 1.22 (t, \(J = 7.0\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100
SNOCOEt
HO
Br

Ethyl (E)-2-(2-(4-bromobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4f)

White solid: 91 mg (yield 64%); mp 181-183 °C; IR (KBr) 3392, 2980, 1749, 1680, 1623, 1071, 831, 806, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.36 – 7.44 (m, 2H), 7.09 – 7.15 (m, 1H), 7.01 (d, J = 7.6 Hz, 2H), 6.97 (d, J = 8.0 Hz, 1H), 5.48 (d, J = 1.6 Hz, 1H), 5.18 (d, J = 1.6 Hz, 1H), 4.68 (s, 2H), 4.11 (s, 1H), 3.93 – 4.10 (m, 2H), 2.32 (s, 2H), 1.22 (t, J = 7.2 Hz, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.5, 166.7, 157.3, 137.6, 136.1, 135.2, 132.8, 132.2, 132.1, 128.6, 126.4, 122.0, 121.1, 95.4, 85.3, 60.6, 54.7, 44.2, 21.0, 14.2. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₂H₂₁BrNO₄S 430.0874, found 430.0879.

Ethyl (E)-2-(2-(4-cyanobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4g)

White solid: 56 mg (yield 44%); mp 190-192 °C; IR (KBr) 3341, 2980, 1752, 1677, 1621, 1091, 945, 827, 817 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 5.50 (d, J = 1.2 Hz, 1H), 5.12 (d, J = 1.2 Hz, 1H), 4.77 (q, J = 14.9 Hz, 2H), 3.94 – 4.14 (m, 3H), 2.32 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.4, 166.5, 157.1, 139.0, 137.5, 135.9, 135.3, 132.9, 132.3, 127.4, 126.4, 121.2, 118.3, 112.0, 95.5, 85.4, 60.7, 54.6, 44.3, 21.0, 14.1 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₁N₂O₄S 421.1217, found 421.1223.

Methyl (E)-4-((3-(2-ethoxy-2-oxoethylidene)-8b-hydroxy-7-methyl-1-oxo-1,3,3a,8b-tetrahydro-2H-benzo[4,5]thieno[2,3-c]pyrrol-2-yl)methyl)benzoate (4h)

White solid: 52 mg (yield 38%); mp 130-132 °C; IR (KBr) 3432, 1719, 1701, 1628, 1149, 949, 816, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 2H), 7.49 (s, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 (dd, J = 8.0, 0.8 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 5.47 (d, J = 1.2 Hz, 1H), 5.16 (d, J = 1.2 Hz, 1H), 4.79 (q, J = 12.0 Hz, 2H), 3.98 – 4.14 (m, 3H), 3.88 (s, 3H), 2.32 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.5, 166.61, 166.59, 157.3, 138.8, 137.6, 136.1, 135.2, 132.2, 130.3, 129.8, 126.7, 126.4, 121.2, 95.5, 85.4, 60.6, 54.6, 52.2, 44.5, 21.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₁N₂O₄S 421.1217, found 421.1223.
Ethyl (E)-2-(8b-hydroxy-2-(3-methoxybenzyl)-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4i)

White solid: 85 mg (yield 67%); mp 188-189 °C; IR (KBr) 3403, 2952, 1750, 1677, 1616, 1034, 958, 794, 663 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.50 (s, 1H), 7.20 (t, \(J = 7.8\) Hz, 1H), 7.12 (d, \(J = 8.0\) Hz, 1H), 6.98 (d, \(J = 8.0\) Hz, 1H), 6.78 (dd, \(J = 8.2, 2.2\) Hz, 1H), 6.73 (d, \(J = 7.6\) Hz, 1H), 6.56 (s, 1H), 5.45 (d, \(J = 1.6\) Hz, 1H), 5.24 (d, \(J = 1.2\) Hz, 1H), 4.73 (q, \(J = 19.7\) Hz, 2H), 4.01 – 4.17 (m, 2H), 3.70 (s, 1H), 3.63 (s, 3H), 2.33 (s, 3H), 1.24 (t, \(J = 7.2\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.5, 166.7, 160.0, 157.2, 137.8, 136.3, 135.19, 135.18, 132.2, 130.0, 126.3, 121.1, 119.0, 113.8, 111.5, 95.6, 85.3, 77.3, 60.5, 55.0, 54.7, 44.6, 20.9, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{23}\)H\(_{24}\)NO\(_5\)S 454.1370, found 454.1373.

Ethyl (E)-2-(2-(3-chlorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4j)

White solid: 97 mg (yield 75%); mp 177-179 °C; IR (KBr) 3394, 2979, 1750, 1679, 1621, 1178, 953, 831, 664 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.49 (s, 1H), 7.19 – 7.25 (m, 2H), 7.14 (d, \(J = 8.0\) Hz, 2H), 6.91 – 7.06 (m, 2H), 5.46 (s, 1H), 5.20 (s, 1H), 4.73 (q, \(J = 13.9\) Hz 2H), 4.00 – 4.19 (m, 2H), 3.68 – 3.89 (m, 1H), 2.33 (s, 3H), 1.24 (t, \(J = 7.2\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.5, 166.7, 160.0, 157.2, 137.8, 136.3, 135.19, 135.18, 132.2, 130.0, 126.3, 121.1, 119.0, 113.8, 111.5, 95.6, 85.3, 77.3, 60.5, 55.0, 54.7, 44.6, 22.0, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{21}\)ClNO\(_4\)S 430.0874, found 430.0876.

Ethyl (E)-2-(2-(2-fluorobenzyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4k)

White solid: 103 mg (yield 81%); mp 158-160 °C; IR (KBr) 3412, 2968, 1747, 1668, 1035, 839, 744, 664 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 (s, 1H), 7.10 – 7.15 (m, 1H), 7.03 (dd, \(J = 8.0, 2.4\)Hz, 1H), 6.90 – 7.00 (m, 3H), 6.88 (d, \(J = 8.0\) Hz, 1H), 5.38 (d, \(J = 1.2\) Hz, 1H), 5.17 (d, \(J = 1.2\) Hz, 1H), 4.71 (q, \(J = 15.3\) Hz, 2H), 3.89 – 4.04 (m, 2H), 3.77 (s, 1H), 2.23 (s, 3H), 1.13 (t, \(J = 7.2\) Hz, 3H) ppm. \(^{13}\)C\{\(^1\)H\} NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.5, 160.3 (d, \(J = 244.9\) Hz), 157.1, 137.7, 136.1, 135.2, 132.2, 129.7 (d, \(J = 8.2\) Hz), 128.3 (d, \(J = 3.4\) Hz), 126.3, 124.7, 121.1, 120.9, 120.7, 115.6 (d, \(J = 21.1\) Hz), 95.2,
S8

85.3, 60.5, 54.7, 38.4, 21.0, 14.2 ppm. 19F NMR (376 MHz, CDCl$_3$) δ -118.01 – -118.09 (m). HRMS (ESI-TOF) m/z [M + H]$^+$ calculated for C$_{22}$H$_{21}$FNO$_4$S 414.1170, found 414.1173.

Ethyl (E)-2-(8b-hydroxy-7-methyl-1-oxo-2-(pyridin-2-ylmethyl)-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4l)

White solid: 50 mg (yield 42%); mp 171-172 °C; IR (KBr) 3360, 2957, 1745, 1680, 1609, 951, 813, 664 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (d, $J = 4.4$ Hz, 1H), 7.64 (td, $J = 7.5$, 1.6 Hz, 1H), 7.17 – 7.23 (m, 1H), 7.11 (t, $J = 8.2$ Hz, 2H), 6.99 (d, $J = 8.0$ Hz, 1H), 5.45 (d, $J = 1.2$ Hz, 1H), 5.27 (d, $J = 1.2$ Hz, 1H), 5.04 (d, $J = 16.2$ Hz, 1H), 4.87 (s, 1H), 4.70 (d, $J = 16.2$ Hz, 1H), 4.03 – 4.17 (m, 2H), 2.32 (s, 3H), 1.24 (t, $J = 7.2$ Hz, 3H) ppm. 13C{$_1^H$} NMR (100 MHz, CDCl$_3$) δ 173.6, 166.7, 157.4, 153.6, 149.3, 137.6, 137.5, 136.2, 135.1, 132.0, 126.7, 123.0, 121.3, 121.0, 95.7, 85.5, 60.4, 54.8, 46.4, 21.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calculated for C$_{22}$H$_{21}$FNO$_4$S 414.1173, found 414.1173.

Ethyl (E)-2-(8b-hydroxy-7-methyl-1-oxo-2-(thiophen-2-ylmethyl)-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4m)

White solid: 94 mg (yield 78%); mp 176-178 °C; IR (KBr) 3370, 2960, 1743, 1681, 1615, 1029, 949, 824, 811 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (s, 1H), 7.19 (dd, $J = 5.2$, 1.2 Hz, 1H), 7.06 – 7.14 (m, 1H), 6.94 – 7.05 (m, 2H), 6.82 – 6.93 (m, 1H), 5.43 (d, $J = 1.2$ Hz, 1H), 5.41 (d, $J = 1.2$ Hz, 1H), 4.92 (d, $J = 16.0$ Hz, 1H), 4.81 (d, $J = 16.0$ Hz, 1H), 4.00 – 4.18 (m, 2H), 3.84 (s, 1H), 2.32 (s, 3H), 1.26 (t, $J = 7.2$ Hz, 3H) ppm. 13C{$_1^H$} NMR (100 MHz, CDCl$_3$) δ 172.9, 166.8, 157.0, 137.7, 136.1, 135.8, 135.1, 132.1, 127.1, 126.0, 126.3, 125.9, 121.1, 95.1, 85.1, 60.6, 54.7, 40.0, 21.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calculated for C$_{20}$H$_{20}$NO$_4$S 397.1217, found 397.1219.

Ethyl (E)-2-(2-benzyl-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4n)

White solid: 90 mg (yield 79%); mp 111-113 °C; IR (KBr) 3385, 2965, 1751, 1679, 1621, 1070, 832, 743, 701 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.68 (d, $J = 8.0$ Hz, 1H), 7.26 – 7.37 (m, 4H), 7.04 – 7.21 (m, 4H), 5.47 (d, $J = 1.2$ Hz 1H), 5.26 (d, $J = 1.2$ Hz 1H), 4.74 (q, $J = 15.9$ Hz, 2H), 3.99 – 4.15 (m, 2H), 3.89 (s, 1H), 1.23 (t, $J = 7.2$ Hz, 3H) ppm. 13C{$_1^H$} NMR (100 MHz, CDCl$_3$) δ 173.5, 166.8, 157.0, 137.7, 136.1, 141.3, 136.2, 133.7 131.1, 129.0, 1287.0, 126.9, 125.8, 125.2, 121.4, 95.6, 85.4, 60.5, 54.4, 44.9, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calculated for C$_{21}$H$_{20}$NO$_4$S 382.1108, found 382.1111.
Ethyl (E)-2-(2-benzyl-7-(tert-butyl)-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4o)

White solid: 103 mg (yield 78%); mp 135-137 °C; IR (KBr) 3430, 2958, 1754, 1682, 1615, 1152, 950, 825, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 1.8 Hz, 1H), 7.36 (dd, J = 8.4, 2.0 Hz, 1H), 7.26 – 7.33 (m, 3H), 7.20 – 7.26 (m, 1H), 7.09 – 7.20 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 5.50 (d, J = 1.2 Hz, 1H), 5.24 (d, J = 1.2 Hz, 1H), 4.74 (q, J = 23.2 Hz 2H), 3.92 – 4.13 (m, 3H), 1.32 (s, 9H), 1.22 ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.6, 166.8, 157.6, 148.8, 137.91, 137.87, 136.04, 136.02, 133. 8, 129.0, 128.6, 127.9, 126.9, 122.8, 120.9, 95.34, 95.28, 85.4, 60.5, 54.8, 44.9, 34.7, 31.4, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₈NO₄S 438.1734, found 438.1735.

Ethyl (E)-2-(2-benzyl-7-chloro-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4p)

White solid: 73 mg (yield 59%); mp 178-180 °C; IR (KBr) 3347, 2962, 1748, 1677, 1608, 1027, 814, 732, 659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 2.0 Hz, 1H), 7.27 – 7.34 (m, 3H), 7.22 – 7.25 (m, 1H), 7.08 – 7.19 (m, 2H), 7.00 (d, J = 8.4 Hz, 1H), 5.53 (d, J = 1.2 Hz, 1H), 5.26 (d, J = 1.2 Hz, 1H), 4.75 (q, J = 11.6 Hz, 2H), 4.21 (s, 1H), 3.93 – 4.12 (m, 2H), 1.22 ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.6, 166.9, 157.0, 139.6, 137.9, 133.5, 131.2, 130.9, 129.0, 128.1, 126.9, 126.2, 122.3, 95.7, 85.0, 60.7, 54.9, 45.0, 14.1 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₉ClNO₄S 416.0718, found 416.0719.

Ethyl (E)-2-(2-benzyl-7-bromo-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4q)

White solid: 119 mg (yield 80%); mp 178-180 °C; IR (KBr) 3348, 2962, 1749, 1678, 1609, 1027, 813, 732, 658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 2.0 Hz, 1H), 7.40 (dd, J = 8.2, 2.0 Hz, 1H), 7.26 – 7.35 (m, 3H), 7.14 (d, J = 6.8 Hz, 2H), 6.95 (d, J = 8.2 Hz, 1H), 5.53 (d, J = 1.2 Hz, 1H), 5.26 (d, J = 1.6 Hz, 1H), 4.75 (q, J = 11.5 Hz, 2H), 4.18 – 4.28 (m, 1H), 3.92 – 4.11 (m, 2H), 1.22 ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.0, 166.9, 157.0, 139.6, 137.9, 133.5, 131.2, 130.9, 129.0, 128.1, 126.9, 126.2, 122.3, 95.7, 85.0, 60.7, 54.9, 45.0, 14.1 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₉BrNO₄S 460.0213, found 460.0210.
Ethyl (E)-2-(2-benzyl-7-fluoro-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4r)

White solid: 54 mg (yield 45%); mp 154-156 °C; IR (KBr) 3381, 2981, 1749, 1670, 1624, 1154, 837, 814, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.2, 1.8 Hz, 1H), 7.37 – 7.38 (m, 3H), 7.14 (d, J = 6.4 Hz, 2H), 6.95 – 7.07 (m, 2H), 5.54 (d, J = 1.2 Hz, 1H), 5.27 (d, J = 1.2 Hz, 1H), 4.77 (q, J = 13.3 Hz 2H), 4.20 (s, 1H), 3.97 – 4.14 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.1, 166.8, 161.1 (d, J = 243.1 Hz), 157.0, 137.8 (d, J = 7.4 Hz), 135.9, 133.5, 129.0, 128.1, 126.9, 122.3 (d, J = 8.0 Hz), 118.6 (d, J = 23.2 Hz), 113.3, (d, J = 23.7 Hz), 95.7, 85.1, 60.6, 55.1, 45.0, 14.2 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.65 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₁₉FNO₄S 400.1013, found 400.1011.

Ethyl (E)-2-(7-acetyl-2-benzyl-8b-hydroxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4s)

White solid: 55 mg (yield 43%); mp 147-149 °C; IR (KBr) 3422, 1729, 1655, 1624, 1177, 955, 832, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 1.2 Hz, 1H), 7.91 (dd, J = 8.2, 1.8 Hz, 1H), 7.26 – 7.34 (m, 3H), 7.18 (d, J = 8.0 Hz, 1H), 7.08 – 7.16 (m, 2H), 5.51 (d, J = 1.2 Hz, 1H), 5.30 (d, J = 1.2 Hz, 1H), 4.74 (q, J = 12.8 Hz, 2H), 4.41 (s, 1H), 4.05 – 4.19 (m, 2H), 2.57 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 173.2, 166.7, 156.5, 148.2, 136.8, 134.6, 133.5, 131.1, 129.0, 128.1, 126.8, 126.3, 121.4, 95.9, 84.7, 60.6, 55.1, 45.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₁NO₅S 424.1213, found 422.1210.

Ethyl (E)-2-(2-benzyl-8b-hydroxy-6-methoxy-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4t)

White solid: 89 mg (yield 72%); mp 130-132 °C; IR (KBr) 3417, 2964, 1751, 1678, 1610, 1173, 921, 804, 627 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.6 Hz, 1H), 7.27 – 7.32 (m, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.07 – 7.20 (m, 2H), 6.69 (dd, J = 8.6, 2.2 Hz, 1H), 6.60 (d, J = 2.0Hz, 1H), 5.44 (d, J = 1.2Hz 1H), 5.24 (d, J = 1.1 Hz, 1H), 4.73 (q, J = 13.1 Hz, 2H), 4.00 – 4.16 (m, 2H), 3.82 – 3.93 (m, 1H), 3.77 (s, 3H), 1.23 (t, J = 7.2 Hz, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 173.2, 166.7, 156.5, 148.2, 136.8, 134.6, 133.5, 131.1, 129.0, 128.1, 128.1, 126.3, 121.4, 95.9, 84.7, 60.6, 55.1, 45.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₂H₂₂NO₅S 412.1213, found 412.1215.
Ethyl (E)-2-(2-benzyl-8b-hydroxy-5-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4u)

White solid: 75 mg (yield 63%); mp 139-141 °C; IR (KBr) 3383, 2976, 1748, 1680, 1624, 1072, 828, 721, 675 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.54 (m, 1H), 7.28 – 7.34 (m, 3H), 7.08 – 7.20 (m, 4H), 5.42 (d, J = 1.6 Hz, 1H), 5.28 (d, J = 1.2 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 4.68 (d, J = 16.0 Hz, 1H), 4.08 – 4.23 (m, 2H), 3.41 (s, 1H), 2.21 (s, 2H), 1.27 (t, J = 7.0 Hz, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.7, 166.8, 157.3, 140.8, 135.9, 133.8, 131.6, 131.5, 131.3, 127.9, 126.90, 125.7, 123.2, 123.1, 95.5, 85.8, 60.5, 54.2, 44.9, 19.9, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₂H₂₂NO₄S 396.1264, found 396.1265.

Ethyl (E)-2-(9-benzyl-10a-hydroxy-10-oxo-7a,9,10,10a-tetrahydro-8H-naphtho[1',2':4,5]thieno[2,3-c]pyrrol-8-ylidene)acetate (4v)

White solid: 32 mg (yield 23%); mp 200-202 °C; IR (KBr) 3398, 2992, 1748, 1669, 1626, 1185, 934, 820, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 8.6 Hz, 1H), 7.77 (dd, J = 8.2, 3.4 Hz, 2H), 7.53 – 7.61 (m, 1H), 7.38– 7.44 (m, 1H), 7.26 – 7.38 (m, 4H), 7.23 – 7.26 (m, 1H), 7.07 – 7.23 (m, 3H), 5.69 (d, J = 1.2 Hz, 1H), 5.22 (d, J = 1.2 Hz, 1H), 4.76 (t, J = 16.4 Hz 2H), 4.46 – 4.51 (m, 1H), 3.80 – 3.91 (m, 1H), 3.56 – 3.68 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.5, 167.2, 157.6, 140.0, 133.8, 132.3, 132.2, 131.0, 129.0, 128.8, 128.5, 127.96, 127.9, 127.3, 125.1, 125.0, 119.9, 94.6, 89.3, 60.5, 55.3, 14.0 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₂₂NO₄S 432.1264, found 432.1261.

Ethyl (E)-2-(8b-hydroxy-7-methyl-1-oxo-2-phenethyl-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4w)

White solid: 80 mg (yield 65%); mp 128-130 °C; IR (KBr) 3431, 2980, 1746, 1682, 1619, 1027, 818, 749, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.02 – 7.15 (m, 6H), 6.98 (d, J = 8.0 Hz, 1H), 5.43 (d, J = 1.2 Hz, 1H), 5.34 (d, J = 1.2 Hz, 1H), 4.04 – 4.20 (m, 2H), 3.82 – 3.93 (m, 2H), 3.63 (dt, J = 13.8, 6.8 Hz, 1H), 2.77 – 2.90 (m, 2H), 2.30 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.5, 167.2, 157.6, 140.0, 133.8, 132.3, 132.2, 131.0, 129.0, 128.8, 128.5, 127.96, 127.9, 127.3, 125.1, 125.0, 119.9, 94.6, 89.3, 60.5, 55.3, 14.0 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₄NO₄S 410.1421, found 410.1426.
Ethyl (E)-2-(2-butyl-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4x)

White solid: 66 mg (yield 61%); mp 132-134 °C; IR (KBr) 3420, 2941, 1751, 1683, 1619, 1049, 829, 804, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 8.0 Hz, 1H), 5.30 (d, J = 1.2 Hz, 1H), 4.03 – 4.20 (m, 2H), 3.79 – 3.99 (m, 1H), 3.44 – 3.61 (m, 2H), 2.31 (s, 3H), 1.45 – 1.63 (m, 2H), 1.20 – 1.37 (m, 5H), 0.89 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.3, 167.0, 158.2, 137.7, 136.4, 135.0, 132.0, 126.3, 121.0, 93.9, 85.1, 54.6, 41.2, 28.2, 20.9, 20.0, 14.2, 13.6 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₂₄NO₄S 362.1421, found 362.1426.

Ethyl (E)-2-(2-cyclopentyl-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4y)

White solid: 20 mg (yield 18%); mp 125-127 °C; IR (KBr) 3421, 2960, 1748, 1681, 1613, 1142, 807, 738, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.48 (s, 1H), 5.35 (s, 1H), 4.42 (p, J = 8.4 Hz, 1H), 3.94 – 4.15 (m, 3H), 2.31 (s, 3H), 1.92 – 2.07 (m, 2H), 1.72 – 1.91 (m, 4H), 1.55 – 1.67 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.4, 167.1, 158.0, 137.8, 136.6, 134.9, 131.9, 126.2, 123.0, 94.7, 84.8, 60.4, 54.5, 54.4, 27.8, 27.3, 25.5, 25.4, 20.9, 14.3 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₀H₂₄NO₄S 374.1421, found 374.1426.

Ethyl (E)-2-(8b-hydroxy-7-methyl-1-oxo-2-phenyl-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4z)

White solid: 20 mg (yield 17%); mp 205-207 °C; IR (KBr) 3399, 2969, 1753, 1679, 1664, 1086, 808, 695, 664 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.56 (m, 4H), 7.22 (d, J = 7.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 5.56 (d, J = 1.2 Hz, 1H), 5.12 (d, J = 1.2 Hz, 1H), 4.07 – 4.20 (m, 2H), 3.58 (s, 1H), 2.32 (s, 3H), 1.25 (t, J = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.8, 166.8, 159.2, 138.0, 136.3, 135.2, 133.4, 132.2, 130.0, 129.5, 127.4, 126.2, 121.1, 96.1, 85.4, 60.4, 54.6, 21.0, 14.2 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₂₃NO₄S 382.1105, found 382.1105.
Ethyl (E)-2-(8b-hydroxy-7-methyl-1-oxo-2-(p-tolyl)-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4aa)

White solid: 45 mg (yield 38%); mp 204-206 °C; IR (KBr) 3422, 2974, 1753, 1680, 1665, 1155, 836, 800, 717 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.48 (s, 1H), 7.27 (d, \(J = 8.4\) Hz, 2H), 7.14 (dd, \(J = 8.0, 0.8\) Hz, 1H), 7.09 (d, \(J = 8.0\) Hz, 2H), 7.02 (d, \(J = 8.0\) Hz, 1H), 5.59 (d, \(J = 1.2\) Hz, 1H), 5.11 (d, \(J = 1.6\) Hz, 1H), 3.98 – 4.16 (m, 2H), 3.81 – 3.96 (m, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 1.21 (t, \(J = 7.0\) Hz, 3H) ppm. \(^13\)C\({}^{1}\)H NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.9, 167.0, 159.7, 139.7, 137.9, 136.4, 135.1, 132.1, 130.5, 127.1, 126.4, 121.1, 95.8, 85.3, 77.0, 60.4, 54.6, 21.3, 20.9, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{22}\)NO\(_4\)S 396.1264, found 396.1267.

Ethyl (E)-2-(2-(4-bromophenyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4ab)

White solid: 47 mg (yield 38%); mp 190-192 °C; IR (KBr) 3430, 2950, 1755, 1677, 1620, 1146, 844, 802, 757 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.48 (s, 1H), 7.08 – 7.19 (m, 3H), 7.02 (d, \(J = 8.0\) Hz, 1H), 6.97 (d, \(J = 8.4\) Hz, 2H), 5.58 (d, \(J = 1.2\) Hz 1H), 5.10 (d, \(J = 0.8\) Hz 1H), 3.98 – 4.15 (m, 3H), 3.82 (s, 2H), 2.31 (s, 3H), 1.21 (t, \(J = 7.0\) Hz, 3H) ppm. \(^13\)C\({}^{1}\)H NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.0, 167.0, 160.1, 159.9, 137.9, 136.4, 135.1, 132.1, 128.6, 126.4, 121.1, 115.2, 95.8, 85.3, 60.4, 55.6, 54.5 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{22}\)H\(_{22}\)NO\(_5\)S 412.1213, found 412.1212.

Ethyl (E)-2-(2-(4-bromophenyl)-8b-hydroxy-7-methyl-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (4ac)

Red solid: 40 mg (yield 29%); mp 190-192 °C; IR (KBr) 3449, 2922, 1751, 1685, 1623, 1155, 837, 806, 661 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.63 (d, \(J = 8.8\) Hz, 2H), 7.46 (s, 1H), 7.08 – 7.20 (m, 3H), 7.03 (d, \(J = 8.0\) Hz, 1H), 5.56 (d, \(J = 0.8\) Hz, 1H), 5.11 (d, \(J = 1.2\) Hz, 1H), 4.05 – 4.19 (m, 2H), 3.60 (s, 1H), 2.32 (s, 3H), 1.24 (t, \(J = 7.0\) Hz, 3H) ppm. \(^13\)C\({}^{1}\)H NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.5, 166.7, 158.8, 138.0, 136.1, 135.3, 132.3, 129.2, 126.3, 123.6, 121.2, 96.2, 85.4, 60.5, 54.6, 20.9, 14.2 ppm. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{21}\)H\(_{19}\)BrNO\(_4\)S 460.0213, found 460.0215.
Ethyl 2-(2-benzyl-3,8b-dihydroxy-7-methyl-1-oxo-2,3,3a,8b-tetrahydro-1H-benzo[4,5]thieno[2,3-c]pyrrol-3-yl)acetate (5a)

White solid: 62 mg (yield 50%); mp 122-124 °C; IR (KBr) 3381, 3056, 2984, 1734, 1662, 1451, 1371, 809, 737, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.26 – 7.39 (m, 5H), 7.04 – 7.20 (m, 2H), 4.86 (d, J = 15.6 Hz, 1H), 4.53 (s, 1H), 4.26 (d, J = 15.6 Hz, 1H), 4.14 (s, 1H), 3.91 – 4.08 (m, 2H), 3.81 – 3.90 (m, 1H), 2.80 (d, J = 16.4 Hz, 1H), 2.60 (d, J = 16.4 Hz, 1H), 2.33 (s, 3H), 1.17 (t, J = 7.2 Hz, 2H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.1, 169.7, 137.7, 137.4, 136.3, 136.1, 132.0, 128.7, 128.0, 127.6, 126.5, 121.7, 87.0, 86.4, 63.4, 61.5, 44.7, 43.8, 21.0, 13.9 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂ₓH₂₂NO₄S 414.1370, found 414.1269.

2-acetyl-N-(4-cyanobenzyl)-5-methylbenzo[b]thiophene-3-carboxamide (6a)

White solid: 14 mg (yield 13%); mp 170-172 °C; IR (KBr) 3267, 2922, 1776, 1637, 1637, 844, 827, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.41 – 7.50 (m, 1H), 7.30 – 7.36 (m, 1H), 4.71 (d, J = 6.0 Hz, 2H), 2.57 (s, 2H), 2.44 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.7, 165.0, 143.3, 138.9, 138.6, 137.5, 136.0, 134.9, 132.5, 130.1, 128.5, 125.1, 122.1, 118.7, 111.4, 43.7, 29.6, 21.5 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂ₒH₁₇N₂O₂S 348.1005, found 348.1008.

Methyl 4-((2-acetyl-5-methylbenzo[b]thiophene-3-carboxamido)methyl)benzoate (6b)

White solid: 20 mg (yield 17%); mp 183-185 °C; IR (KBr) 3448, 3262, 1684, 1280, 811, 750, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 2H), 7.84 (s, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.37 (dd, J = 8.2, 1.4 Hz, 1H), 7.10 (s, 1H), 4.82 (d, J = 5.9 Hz, 2H), 3.95 (s, 3H), 2.64 (s, 3H), 2.49 (s, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.7, 166.8, 164.9, 142.8, 139.2, 138.6, 135.9, 135.2, 130.1, 129.6, 128.0, 125.1, 122.1, 52.2, 43.9, 29.6, 21.5 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₁H₂₆NO₄S 382.1108, found 382.1103.

2,5-diacetyl-N-benzylbenzo[b]thiophene-3-carboxamide (6c)

White solid: 33 mg (yield 31%); mp 148-150 °C; IR (KBr) 3259, 1681, 1665, 1245, 949, 829, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.05 (dd, J = 8.4, 1.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.13 (s, 1H), 4.75 (d, J = 5.6
Hz, 2H), 2.62 (s, 3H), 2.60 (s, 3H) ppm. 13C 1H NMR (100 MHz, CDCl$_3$) δ 197.3, 192.3, 163.9, 144.3, 141.1, 138.1, 137.4, 136.3, 134.9, 129.0, 128.3, 128.0, 126.7, 126.5, 122.8, 44.5, 29.4, 26.6 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calcd for C$_{20}$H$_{18}$NO$_3$S 352.1002, found 352.1000.

2-acetyl-N-(sec-butyl)-5-methylbenzo[b]thiophene-3-carboxamide (6d)

White solid: 50mg (yield 58%); mp 101-103 °C; IR (KBr) 3444, 2970, 1665, 1620, 1014, 922, 806, 701 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (d, $J = 8.8$ Hz, 2H), 7.31 (d, $J = 8.0$ Hz, 1H), 6.27 (s, 1H), 4.17 – 4.28 (m, 1H), 2.63 (s, 3H), 2.46 (s, 3H), 1.55 – 1.72 (m, 2H), 1.31 (d, $J = 6.4$ Hz, 3H), 1.03 (t, $J = 7.4$ Hz, 3H) ppm. 13C 1H NMR (100 MHz, CDCl$_3$) δ 192.4, 164.4, 139.5, 138.6, 137.9, 136.4, 135.6, 129.9, 124.7, 122.2, 47.6, 29.5, 29.1, 21.5, 20.2, 10.5 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calcd for C$_{16}$H$_{20}$NO$_2$S 290.1209, found 290.1211.

2-acetyl-N-cyclopentyl-5-methylbenzo[b]thiophene-3-carboxamide (6e)

White solid: 39 mg (yield 43%); mp 167-169 °C; IR (KBr) 3443, 2959, 1630, 1557, 1014, 911, 803, 697 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.58 – 7.79 (m, 2H), 7.30 (d, $J = 8.4$ Hz, 1H), 6.55 (d, $J = 5.6$ Hz, 1H), 4.50 (h, $J = 6.9$ Hz, 1H), 2.61 (s, 3H), 2.46 (s, 3H), 2.06 – 2.22 (m, 2H), 1.54 – 1.80 (m, 6H) ppm. 13C 1H NMR (100 MHz, CDCl$_3$) δ 192.5, 164.5, 139.6, 138.6, 137.8, 136.3, 135.6, 129.9, 124.8, 122.1, 51.9, 32.9, 29.1, 23.8, 21.5 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calcd for C$_{17}$H$_{20}$NO$_2$S 302.1207.

2-acetyl-5-methyl-N-phenylbenzo[b]thiophene-3-carboxamide (6f)

White solid: 35 mg (yield 38%); mp 178-180 °C; IR (KBr) 3448, 2920, 1667, 1643, 1216, 809, 742, 686 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.84 (s, 1H), 7.96 (s, 1H), 7.73 (dd, $J = 8.0, 5.6$ Hz, 3H), 7.41 (t, $J = 7.8$ Hz, 1H), 7.33 – 7.37 (m, 1H), 7.20 (t, $J = 7.4$ Hz, 1H), 2.67 (s, 3H), 2.47 (s, 3H) ppm. 13C 1H NMR (100 MHz, CDCl$_3$) δ 193.4, 162.5, 139.7, 138.8, 137.7, 137.5, 136.0, 135.5, 130.1, 129.2, 125.4, 125.0, 122.1, 120.3, 29.7, 21.5 ppm. HRMS (ESI-TOF) m/z [M + H]$^+$ calcd for C$_{18}$H$_{12}$NO$_2$S 310.0896, found 310.0893.
2-acetyl-5-methyl-N-(p-tolyl)benzo[b]thiophene-3-carboxamide (6g)

White solid: 26 mg (yield 27%); mp 175-177 °C; IR (KBr) 3257, 2921, 1667, 1640, 1236, 809, 793, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.93 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.34 (dd, J = 8.4, 1.2 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 2.66 (s, 3H), 2.46 (s, 3H), 2.37 (s, 3H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 193.3, 162.4, 139.8, 138.8, 137.6, 135.9, 135.6, 135.1, 134.7, 130.1, 129.8, 129.7, 125.4, 122.1, 120.3, 119.8, 29.6, 21.5, 21.0 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₁₈NO₂S 324.1053, found 324.1057.

2-acetyl-N-(4-methoxyphenyl)-5-methylbenzo[b]thiophene-3-carboxamide (6h)

Yellow solid: 20 mg (yield 20%); mp 191-193 °C; IR (KBr) 3273, 2915, 1685, 1641, 1242, 825, 700, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.93 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 9.2 Hz, 2H), 7.34 (dd, J = 8.2, 0.6 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.66 (s, 3H), 2.46 (s, 3H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 193.4, 162.4, 156.9, 139.7, 138.8, 137.6, 135.9, 135.7, 130.1, 129.8, 129.7, 125.4, 122.1, 120.3, 119.8, 29.6, 21.5 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₁₈NO₃S 340.1002, found 340.1004.

2-acetyl-N-(4-bromophenyl)-5-methylbenzo[b]thiophene-3-carboxamide (6i)

Yellow solid: 35 mg (yield 30%); mp 198-200 °C; IR (KBr) 3256, 2920, 1667, 1647, 1236, 810, 782, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 8.00 (s, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.35 (dd, J = 8.4, 1.2 Hz, 1H), 2.65 (s, 3H), 2.47 (s, 3H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 193.9, 162.3, 139.4, 138.8, 137.3, 136.9, 136.2, 135.0, 132.1, 130.2, 125.7, 122.0, 121.8, 117.5, 30.0, 21.6 ppm. HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₁₄BrNO₃S 388.0001, found 388.0007.
2-acetyl-5-methyl-N-(4-nitrophenyl)benzo[b]thiophene-3-carboxamide (6j)

Red solid: 5 mg (yield 5%); mp 225-227 °C; IR (KBr) 3315, 2918, 1689, 1660, 1242, 865, 853, 802 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.28 (d, J = 8.8 Hz, 2H), 8.19 (s, 1H), 7.95 (d, J = 9.2 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 8.4, 0.8 Hz, 1H), 2.74 (s, 3H), 2.51 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 194.8, 162.1, 143.81, 143.80, 139.4, 139.1, 137.0, 136.5, 134.0, 130.5, 126.2, 125.1, 121.9, 119.8, 30.6, 21.7 ppm. HRMS (ESI-TOF) m/z [M + H]+ calcd for C₁₈H₁₅N₂O₄S 355.0747, found 355.0747.

Ethyl (E)-2-(2-benzyl-7-methyl-1-oxo-1,2-dihydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (7)

Yellow solid: 53 mg (yield 70%); mp 196-198 °C; IR (KBr) 3419, 1713, 1630, 1071, 811, 705, 647 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.27 – 7.37 (m, 5H), 5.63 (s, 1H), 5.00 (s, 2H), 4.27 (q, J = 7.2 Hz, 2H), 2.52 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 163.9, 145.8, 144.4, 144.2, 136.2, 132.1, 131.3, 128.9, 128.4, 127.6, 126.9, 122.7, 122.7, 98.0, 60.8, 43.4, 21.5, 14.3 ppm. HRMS (ESI-TOF) m/z [M + H]+ calcd for C₂₂H₂₀NO₃ 378.1158, found 378.1157.

Ethyl (E)-2-(2-benzyl-8b-hydroxy-7-methyl-4,4-dioxido-1-oxo-1,2,3a,8b-tetrahydro-3H-benzo[4,5]thieno[2,3-c]pyrrol-3-ylidene)acetate (8)

White solid: 62 mg (yield 73%); mp 197-199 °C; IR (KBr) 3441, 2994, 1737, 1700, 1637, 1072, 837, 732, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.26 – 7.32 (m, 2H), 7.21 – 7.26 (m, 1H), 7.13 (d, J = 7.2 Hz, 2H), 5.68 (d, J = 1.2 Hz, 1H), 5.55 (d, J = 1.2 Hz, 1H), 5.04 (s, 1H), 4.70 (q, J = 8.0 Hz, 2H), 4.03 – 4.16 (m, 1H), 3.84 – 3.99 (m, 1H), 2.49 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 166.6, 146.2, 145.9, 136.9, 134.7, 133.1, 133.0, 129.0, 128.1, 126.8, 126.7, 121.2, 100.6, 77.7, 68.2, 61.1, 45.25, 21.8, 14.1 ppm. HRMS (ESI-TOF) m/z [M + H]+ calcd for C₂₂H₂₂NO₅S 428.1162, found 428.1166.

8. NMR spectra of all new compounds
1g, 1H NMR 400 MHz, CDCl$_3$

1g, 1C NMR 100 MHz, CDCl$_3$
4a, 1H NMR 400 MHz, CDCl$_3$

4a, 1C NMR 100 MHz, CDCl$_3$
4b, 1H NMR 400 MHz, CDCl$_3$

4b, 13C NMR 100 MHz, CDCl$_3$
$\textbf{4c,}^{1}\text{H NMR 400 MHz, CDCl}_3$

$\textbf{4c}^{13}\text{C NMR 100 MHz, CDCl}_3$
4d, 1H NMR 400 MHz, CDCl$_3$

![NMR spectrum](image)

4d, 13C NMR 100 MHz, CDCl$_3$

![NMR spectrum](image)
4d, 19F NMR 376 MHz, CDCl$_3$

4e, 1H NMR 400 MHz, CDCl$_3$
$4e$, 13C NMR 100 MHz, CDCl$_3$

$4f$, 1H NMR 400 MHz, CDCl$_3$
$4f$, 13C NMR 100 MHz, CDCl$_3$

$4g$, 1H NMR 400 MHz, CDCl$_3$
4g, 1C NMR 100 MHz, CDCl$_3$

4h, 1H NMR 400 MHz, CDCl$_3$
$4h$, 1C NMR 100 MHz, CDCl$_3$

$4i$, 1H NMR 400 MHz, CDCl$_3$
$4i$, 13C NMR 100 MHz, CDCl$_3$

$4j$, 1H NMR 400 MHz, CDCl$_3$
$4j$, 13C NMR 100 MHz, CDCl$_3$

$4k$, 1H NMR 400 MHz, CDCl$_3$
4k, 13C NMR 100 MHz, CDCl$_3$

4k, 19F NMR 376 MHz, CDCl$_3$
$4l$, 1H NMR 400 MHz, CDCl$_3$

$4l$, ^{13}C NMR 100 MHz, CDCl$_3$
4m, 1H NMR 400 MHz, CDCl$_3$

1C NMR 100 MHz, CDCl$_3$
4n, 1H NMR 400 MHz, CDCl$_3$

4n, 13C NMR 100 MHz, CDCl$_3$
$4o$, 1H NMR 400 MHz, CDCl$_3$

$4o$, 13C NMR 100 MHz, CDCl$_3$
^{1}H NMR 400 MHz, CDCl$_3$

13C NMR 100 MHz, CDCl$_3$
$4q$, 1H NMR 400 MHz, CDCl$_3$

$4q$, 13C NMR 100 MHz, CDCl$_3$
$\textbf{4r, }^1\text{H NMR 400 MHz, CDCl}_3$

$\textbf{4r, }^1\text{C NMR 100 MHz, CDCl}_3$
$4r$, 19F NMR 376 MHz, CDCl$_3$

$4s$, 1H NMR 400 MHz, CDCl$_3$
4s, 1C NMR 100 MHz, CDCl$_3$

4t, 1H NMR 400 MHz, CDCl$_3$
\[\text{4t, }^{13}\text{C NMR 100 MHz, CDCl}_3 \]

\[\text{4u, }^1\text{H NMR 400 MHz, CDCl}_3 \]

\[\text{HO} \]
\[\text{N} \]
\[\text{COEt} \]
\[\text{H}_3\text{CO} \]
\[\text{H}_3\text{CO} \]

\[\text{SN} \]
\[\text{COOEt} \]
\[\text{HO} \]
\[\text{H}_3\text{CO} \]
\[\text{H}_3\text{CO} \]
$4u$, 13C NMR 100 MHz, CDCl$_3$

$4v$, 1H NMR 400 MHz, CDCl$_3$
\[4v, ^{13}\text{C} \text{NMR} 100 \text{ MHz}, \text{CDCl}_3\]

\[4w, ^1\text{H} \text{NMR} 400 \text{ MHz}, \text{CDCl}_3\]
4w, 13C NMR 100 MHz, CDCl$_3$

4x, 1H NMR 400 MHz, CDCl$_3$
$4x$, 13C NMR 100 MHz, CDCl$_3$

$4y$, 1H NMR 400 MHz, CDCl$_3$
$4y$, 13C NMR 100 MHz, CDCl$_3$

$4z$, 1H NMR 400 MHz, CDCl$_3$
$4z$, ^{13}C NMR 100 MHz, CDCl$_3$

$4aa$, 1H NMR 400 MHz, CDCl$_3$
4aa, 1C NMR 100 MHz, CDCl$_3$

4ab, 1H NMR 400 MHz, CDCl$_3$
4ab, 1C NMR 100 MHz, CDCl$_3$

4ac, 1H NMR 400 MHz, CDCl$_3$
4ac, 1C NMR 100 MHz, CDCl$_3$

5a, 1H NMR 400 MHz, CDCl$_3$
5a, 13C NMR 100 MHz, CDCl$_3$

6a, 1H NMR 400 MHz, CDCl$_3$
6a. 13C NMR 100 MHz, CDCl$_3$

6b. 1H NMR 400 MHz, CDCl$_3$
$6b$, 13C NMR 100 MHz, CDCl$_3$

$6c$, 1H NMR 400 MHz, CDCl$_3$
$6c$, 13C NMR 100 MHz, CDCl$_3$

$6d$, 1H NMR 400 MHz, CDCl$_3$
6d, 13C NMR 100 MHz, CDCl$_3$

6e, 1H NMR 400 MHz, CDCl$_3$
$\text{6e, }^{13}\text{C NMR 100 MHz, CDCl}_3$

$\text{6f, }^1\text{H NMR 400 MHz, CDCl}_3$
6f, 13C NMR 100 MHz, CDCl$_3$

6g, 1H NMR 400 MHz, CDCl$_3$
$6g$, 13C NMR 100 MHz, CDCl$_3$

$6h$, 1H NMR 400 MHz, CDCl$_3$
6h, 13C NMR 100 MHz, CDCl$_3$

6i, 1H NMR 400 MHz, CDCl$_3$
6i, \(^{13}\text{C} \text{NMR 100 MHz, CDCl}_3

6j, \(^1\text{H} \text{NMR 400 MHz, CDCl}_3
$\textbf{6j, }^{13}\text{C NMR 100 MHz, CDCl}_3$

$\textbf{7, }^1\text{H NMR 400 MHz, CDCl}_3$
7. 13C NMR 100 MHz, CDCl$_3$

8. 1H NMR 400 MHz, CDCl$_3$
8, 13C NMR 100 MHz, CDCl$_3$
9. Computational details and archive entries

Table S2. Cartesian coordinates of some stationary points, optimized at the B3LYP-PCM/6-31+G* level of theory in water.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Cartesian Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.521310000 -0.757469000 0.000115000</td>
</tr>
<tr>
<td>6</td>
<td>0.406977000 0.645408000 -0.000060000</td>
</tr>
<tr>
<td>6</td>
<td>1.553658000 1.450697000 -0.000479000</td>
</tr>
<tr>
<td>6</td>
<td>2.809343000 0.845122000 -0.000442000</td>
</tr>
<tr>
<td>6</td>
<td>2.909927000 -0.553548000 0.000165000</td>
</tr>
<tr>
<td>6</td>
<td>1.769156000 -1.369615000 0.000361000</td>
</tr>
<tr>
<td>6</td>
<td>-1.960244000 -0.101707000 -0.000043000</td>
</tr>
<tr>
<td>6</td>
<td>-0.973403000 1.118803000 0.000358000</td>
</tr>
<tr>
<td>1</td>
<td>1.448904000 2.531867000 -0.001251000</td>
</tr>
<tr>
<td>1</td>
<td>3.708468000 1.453219000 -0.000540000</td>
</tr>
<tr>
<td>1</td>
<td>3.890651000 -1.020796000 0.000202000</td>
</tr>
<tr>
<td>8</td>
<td>-1.398751000 2.259432000 0.000804000</td>
</tr>
<tr>
<td>8</td>
<td>-3.163031000 -0.001770000 -0.000715000</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.138373000 -0.491324000 0.616450000</td>
</tr>
<tr>
<td>8</td>
<td>-0.567392000 -0.971201000 1.579602000</td>
</tr>
<tr>
<td>6</td>
<td>-2.652468000 -0.317770000 0.705873000</td>
</tr>
<tr>
<td>1</td>
<td>-3.119552000 -1.283522000 0.492061000</td>
</tr>
<tr>
<td>1</td>
<td>-2.915679000 -0.008993000 1.717561000</td>
</tr>
<tr>
<td>6</td>
<td>-0.420664000 -0.120511000 -0.670255000</td>
</tr>
<tr>
<td>1</td>
<td>-0.504880000 0.962142000 -0.816378000</td>
</tr>
<tr>
<td>1</td>
<td>-0.931469000 -0.600602000 -1.512319000</td>
</tr>
<tr>
<td>6</td>
<td>1.031941000 0.552731000 0.650588000</td>
</tr>
<tr>
<td>8</td>
<td>1.423213000 -1.641076000 1.035567000</td>
</tr>
<tr>
<td>8</td>
<td>1.825470000 0.403661000 0.156314000</td>
</tr>
<tr>
<td>6</td>
<td>3.250326000 0.105896000 -0.052980000</td>
</tr>
<tr>
<td>1</td>
<td>3.621805000 -0.117188000 1.059471000</td>
</tr>
<tr>
<td>1</td>
<td>3.367942000 -0.785494000 0.567155000</td>
</tr>
<tr>
<td>6</td>
<td>3.929447000 1.318958000 0.548390000</td>
</tr>
<tr>
<td>1</td>
<td>5.004257000 1.124207000 0.634175000</td>
</tr>
<tr>
<td>1</td>
<td>3.790388000 2.203827000 -0.081821000</td>
</tr>
<tr>
<td>1</td>
<td>3.538484000 1.533214000 1.548693000</td>
</tr>
<tr>
<td>17</td>
<td>-3.370758000 0.881533000 -0.444639000</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.938196000 -0.172577000 -0.530271000</td>
</tr>
<tr>
<td>1</td>
<td>2.224365000 0.517656000 -1.332679000</td>
</tr>
<tr>
<td>1</td>
<td>2.184309000 -1.189268000 -0.874208000</td>
</tr>
<tr>
<td>7</td>
<td>2.700013000 0.223687000 0.673783000</td>
</tr>
<tr>
<td>1</td>
<td>2.530461000 -0.450135000 1.420838000</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>0.445780000</td>
</tr>
<tr>
<td>6</td>
<td>-0.326400000</td>
</tr>
<tr>
<td>6</td>
<td>-0.191606000</td>
</tr>
<tr>
<td>6</td>
<td>-1.702917000</td>
</tr>
<tr>
<td>6</td>
<td>-1.564586000</td>
</tr>
<tr>
<td>6</td>
<td>-2.325470000</td>
</tr>
<tr>
<td>1</td>
<td>0.151687000</td>
</tr>
<tr>
<td>1</td>
<td>0.394607000</td>
</tr>
<tr>
<td>1</td>
<td>-2.285135000</td>
</tr>
<tr>
<td>1</td>
<td>-2.042906000</td>
</tr>
<tr>
<td>1</td>
<td>-3.394339000</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1.460418000</td>
</tr>
<tr>
<td>8</td>
<td>1.309906000</td>
</tr>
<tr>
<td>8</td>
<td>0.369729000</td>
</tr>
<tr>
<td>7</td>
<td>-0.742737000</td>
</tr>
<tr>
<td>1</td>
<td>-0.527983000</td>
</tr>
<tr>
<td>1</td>
<td>-0.990849000</td>
</tr>
<tr>
<td>6</td>
<td>-1.875129000</td>
</tr>
<tr>
<td>1</td>
<td>-1.578592000</td>
</tr>
<tr>
<td>1</td>
<td>-1.946430000</td>
</tr>
<tr>
<td>6</td>
<td>-3.170661000</td>
</tr>
<tr>
<td>6</td>
<td>-3.525991000</td>
</tr>
<tr>
<td>6</td>
<td>-4.029772000</td>
</tr>
<tr>
<td>6</td>
<td>-4.712913000</td>
</tr>
<tr>
<td>6</td>
<td>-5.216163000</td>
</tr>
<tr>
<td>6</td>
<td>-5.559171000</td>
</tr>
<tr>
<td>1</td>
<td>-2.875142000</td>
</tr>
<tr>
<td>1</td>
<td>-3.773367000</td>
</tr>
<tr>
<td>1</td>
<td>-4.977957000</td>
</tr>
<tr>
<td>1</td>
<td>-5.873781000</td>
</tr>
<tr>
<td>1</td>
<td>-6.483278000</td>
</tr>
</tbody>
</table>

TS-1
<table>
<thead>
<tr>
<th></th>
<th>INT-1</th>
<th>INT-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.797570000</td>
<td>-2.835268000</td>
</tr>
<tr>
<td>6</td>
<td>2.752097000</td>
<td>-2.690687000</td>
</tr>
<tr>
<td>6</td>
<td>3.805024000</td>
<td>-3.809974000</td>
</tr>
<tr>
<td>6</td>
<td>4.905254000</td>
<td>-5.092066000</td>
</tr>
<tr>
<td>6</td>
<td>4.947745000</td>
<td>-5.249259000</td>
</tr>
<tr>
<td>6</td>
<td>3.906998000</td>
<td>-4.147794000</td>
</tr>
<tr>
<td>6</td>
<td>0.624452000</td>
<td>-0.290622000</td>
</tr>
<tr>
<td>6</td>
<td>1.542553000</td>
<td>-1.348921000</td>
</tr>
<tr>
<td>1</td>
<td>3.742968000</td>
<td>-3.659345000</td>
</tr>
<tr>
<td>1</td>
<td>5.727873000</td>
<td>-5.952614000</td>
</tr>
<tr>
<td>1</td>
<td>5.808480000</td>
<td>-6.242148000</td>
</tr>
<tr>
<td>1</td>
<td>3.957312000</td>
<td>-4.290810000</td>
</tr>
<tr>
<td>16</td>
<td>1.407278000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.200984000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.386697000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.915700000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.603604000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.936152000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.784402000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.607348000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.039481000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.215953000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.604055000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.063013000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.813442000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.271916000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.648438000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.961729000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.779851000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-5.104603000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-5.920610000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-6.590180000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.745024000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.545390000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.013629000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.196848000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.089123000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.544860000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.299327000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.010433000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.239886000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.193453000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.321507000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.226239000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.229081000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.379410000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.317956000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.642585000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.267101000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.254044000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.449599000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.253527000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.149507000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.447399000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.151355000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.444705000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.807961000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.687547000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.438201000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.693279000</td>
<td></td>
</tr>
<tr>
<td>0.197841000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.373479000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.177730000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.027326000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.042452000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.996871000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.605726000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.053729000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.998103000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.333794000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.862441000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.137273000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.642585000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.267101000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.254044000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.449599000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.253527000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.149507000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.447399000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.151355000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.444705000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.807961000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.687547000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.438201000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.693279000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.046682000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.329728000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.434327000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.185252000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.154396000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.217176000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.574544000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.552172000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.687546000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.245177000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.358200000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.448177000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.448177000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>16</td>
<td>-1.458728000</td>
<td>2.064882000</td>
</tr>
<tr>
<td>8</td>
<td>-1.079612000</td>
<td>-1.709286000</td>
</tr>
<tr>
<td>8</td>
<td>-0.626024000</td>
<td>-0.873212000</td>
</tr>
<tr>
<td>6</td>
<td>2.142700000</td>
<td>-1.079871000</td>
</tr>
<tr>
<td>1</td>
<td>1.843661000</td>
<td>-0.632007000</td>
</tr>
<tr>
<td>1</td>
<td>2.391976000</td>
<td>-2.130684000</td>
</tr>
<tr>
<td>7</td>
<td>0.980085000</td>
<td>-1.003603000</td>
</tr>
<tr>
<td>1</td>
<td>1.115057000</td>
<td>-1.152977000</td>
</tr>
<tr>
<td>6</td>
<td>3.342780000</td>
<td>-0.362873000</td>
</tr>
<tr>
<td>6</td>
<td>3.350152000</td>
<td>1.036585000</td>
</tr>
<tr>
<td>6</td>
<td>4.464504000</td>
<td>-1.083322000</td>
</tr>
<tr>
<td>6</td>
<td>4.455815000</td>
<td>1.699678000</td>
</tr>
<tr>
<td>6</td>
<td>5.575433000</td>
<td>-0.421823000</td>
</tr>
<tr>
<td>6</td>
<td>5.572996000</td>
<td>0.971015000</td>
</tr>
<tr>
<td>1</td>
<td>2.485951000</td>
<td>1.606953000</td>
</tr>
<tr>
<td>1</td>
<td>4.471907000</td>
<td>-2.167772000</td>
</tr>
<tr>
<td>1</td>
<td>4.448922000</td>
<td>2.783715000</td>
</tr>
<tr>
<td>1</td>
<td>6.438385000</td>
<td>-0.995259000</td>
</tr>
<tr>
<td>1</td>
<td>6.434451000</td>
<td>1.487180000</td>
</tr>
<tr>
<td>6</td>
<td>-0.382262000</td>
<td>2.766317000</td>
</tr>
<tr>
<td>6</td>
<td>0.618300000</td>
<td>3.329766000</td>
</tr>
<tr>
<td>6</td>
<td>0.420564000</td>
<td>4.577935000</td>
</tr>
<tr>
<td>6</td>
<td>-0.792742000</td>
<td>5.249870000</td>
</tr>
<tr>
<td>6</td>
<td>-1.806459000</td>
<td>4.679721000</td>
</tr>
<tr>
<td>6</td>
<td>-1.599616000</td>
<td>3.468026000</td>
</tr>
<tr>
<td>6</td>
<td>1.943283000</td>
<td>1.233181000</td>
</tr>
<tr>
<td>6</td>
<td>1.925525000</td>
<td>2.654974000</td>
</tr>
<tr>
<td>1</td>
<td>1.219827000</td>
<td>4.999825000</td>
</tr>
<tr>
<td>1</td>
<td>-0.949059000</td>
<td>6.201459000</td>
</tr>
<tr>
<td>1</td>
<td>-2.758416000</td>
<td>5.197212000</td>
</tr>
<tr>
<td>1</td>
<td>-2.381397000</td>
<td>3.063621000</td>
</tr>
<tr>
<td>16</td>
<td>-0.028835000</td>
<td>1.316603000</td>
</tr>
<tr>
<td>8</td>
<td>2.999502000</td>
<td>3.232012000</td>
</tr>
<tr>
<td>8</td>
<td>1.059810000</td>
<td>0.874100000</td>
</tr>
<tr>
<td>6</td>
<td>3.342174000</td>
<td>-0.800791000</td>
</tr>
<tr>
<td>1</td>
<td>2.390767000</td>
<td>-1.231851000</td>
</tr>
<tr>
<td>1</td>
<td>3.972932000</td>
<td>-0.689840000</td>
</tr>
<tr>
<td>7</td>
<td>3.039070000</td>
<td>0.518318000</td>
</tr>
<tr>
<td>1</td>
<td>3.746593000</td>
<td>0.980720000</td>
</tr>
<tr>
<td>6</td>
<td>-2.407517000</td>
<td>-0.254533000</td>
</tr>
<tr>
<td>8</td>
<td>-3.110348000</td>
<td>0.442090000</td>
</tr>
<tr>
<td>6</td>
<td>-2.219114000</td>
<td>0.062654000</td>
</tr>
<tr>
<td>1</td>
<td>-1.503190000</td>
<td>-0.481685000</td>
</tr>
<tr>
<td>1</td>
<td>-2.587107000</td>
<td>1.006064000</td>
</tr>
</tbody>
</table>

TS-2
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-1.754087000</td>
<td>-1.547421000</td>
<td>0.195344000</td>
</tr>
<tr>
<td>1</td>
<td>-1.938969000</td>
<td>-2.339268000</td>
<td>0.928409000</td>
</tr>
<tr>
<td>1</td>
<td>-0.674799000</td>
<td>-1.386047000</td>
<td>0.128370000</td>
</tr>
<tr>
<td>8</td>
<td>-2.274520000</td>
<td>-1.960651000</td>
<td>-1.165053000</td>
</tr>
<tr>
<td>8</td>
<td>-3.438267000</td>
<td>-2.619540000</td>
<td>-1.069123000</td>
</tr>
<tr>
<td>6</td>
<td>-4.066534000</td>
<td>-3.047841000</td>
<td>-2.312114000</td>
</tr>
<tr>
<td>1</td>
<td>-3.367299000</td>
<td>-3.702791000</td>
<td>-2.839952000</td>
</tr>
<tr>
<td>1</td>
<td>-4.244302000</td>
<td>-2.161069000</td>
<td>-2.927294000</td>
</tr>
<tr>
<td>6</td>
<td>-5.355240000</td>
<td>-3.761306000</td>
<td>-1.953898000</td>
</tr>
<tr>
<td>1</td>
<td>-5.849040000</td>
<td>-4.096873000</td>
<td>-2.872749000</td>
</tr>
<tr>
<td>1</td>
<td>-5.159807000</td>
<td>-4.639454000</td>
<td>-1.329132000</td>
</tr>
<tr>
<td>1</td>
<td>-6.040735000</td>
<td>-3.094742000</td>
<td>-1.419797000</td>
</tr>
<tr>
<td>17</td>
<td>-3.944130000</td>
<td>-1.115589000</td>
<td>2.903500000</td>
</tr>
<tr>
<td>6</td>
<td>4.028060000</td>
<td>-1.692696000</td>
<td>-0.354020000</td>
</tr>
<tr>
<td>6</td>
<td>5.378126000</td>
<td>-2.035932000</td>
<td>-0.503487000</td>
</tr>
<tr>
<td>6</td>
<td>3.320772000</td>
<td>-2.188564000</td>
<td>0.752984000</td>
</tr>
<tr>
<td>6</td>
<td>6.013621000</td>
<td>-2.859145000</td>
<td>0.433858000</td>
</tr>
<tr>
<td>1</td>
<td>5.936310000</td>
<td>-1.659688000</td>
<td>-1.358068000</td>
</tr>
<tr>
<td>6</td>
<td>3.951965000</td>
<td>-3.008310000</td>
<td>1.691076000</td>
</tr>
<tr>
<td>1</td>
<td>2.271520000</td>
<td>-1.931461000</td>
<td>0.878733000</td>
</tr>
<tr>
<td>6</td>
<td>5.302048000</td>
<td>-3.346031000</td>
<td>1.535777000</td>
</tr>
<tr>
<td>1</td>
<td>7.061451000</td>
<td>-3.117093000</td>
<td>0.303303000</td>
</tr>
<tr>
<td>1</td>
<td>3.391112000</td>
<td>-3.387276000</td>
<td>2.541652000</td>
</tr>
<tr>
<td>1</td>
<td>5.792974000</td>
<td>-3.985536000</td>
<td>2.262588000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.277085000</td>
<td>2.472487000</td>
<td>0.719209000</td>
</tr>
<tr>
<td>6</td>
<td>-0.530776000</td>
<td>3.132656000</td>
<td>-0.282003000</td>
</tr>
<tr>
<td>6</td>
<td>-1.094854000</td>
<td>4.228684000</td>
<td>-0.958567000</td>
</tr>
<tr>
<td>6</td>
<td>-2.405501000</td>
<td>4.624326000</td>
<td>-0.704928000</td>
</tr>
<tr>
<td>6</td>
<td>-3.153463000</td>
<td>3.945099000</td>
<td>-0.262789000</td>
</tr>
<tr>
<td>6</td>
<td>-2.587644000</td>
<td>2.893860000</td>
<td>0.985099000</td>
</tr>
<tr>
<td>1</td>
<td>1.141593000</td>
<td>1.299418000</td>
<td>-1.124252000</td>
</tr>
<tr>
<td>6</td>
<td>0.860963000</td>
<td>2.751388000</td>
<td>-0.663549000</td>
</tr>
<tr>
<td>1</td>
<td>-0.501988000</td>
<td>4.741416000</td>
<td>-1.710280000</td>
</tr>
<tr>
<td>1</td>
<td>-2.840338000</td>
<td>5.453387000</td>
<td>-1.255067000</td>
</tr>
<tr>
<td>1</td>
<td>-4.175371000</td>
<td>4.246717000</td>
<td>0.475218000</td>
</tr>
<tr>
<td>1</td>
<td>-3.169933000</td>
<td>2.415975000</td>
<td>1.765102000</td>
</tr>
<tr>
<td>16</td>
<td>-0.432251000</td>
<td>1.261298000</td>
<td>1.733021000</td>
</tr>
<tr>
<td>8</td>
<td>1.759258000</td>
<td>3.579024000</td>
<td>-0.751394000</td>
</tr>
<tr>
<td>8</td>
<td>0.241188000</td>
<td>0.609163000</td>
<td>-1.615026000</td>
</tr>
<tr>
<td>6</td>
<td>2.965654000</td>
<td>-0.346405000</td>
<td>-1.451985000</td>
</tr>
<tr>
<td>1</td>
<td>2.108502000</td>
<td>-1.013316000</td>
<td>-1.581493000</td>
</tr>
<tr>
<td>1</td>
<td>3.436530000</td>
<td>-0.221801000</td>
<td>-2.434739000</td>
</tr>
<tr>
<td>7</td>
<td>2.429592000</td>
<td>0.938198000</td>
<td>-1.000734000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.079756000</td>
<td>1.646697000</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>-2.423532000</td>
<td>-0.666611000</td>
<td>1.083859000</td>
</tr>
<tr>
<td>8</td>
<td>-3.628400000</td>
<td>-0.572019000</td>
<td>0.915800000</td>
</tr>
<tr>
<td>6</td>
<td>-1.750775000</td>
<td>0.079892000</td>
<td>2.229603000</td>
</tr>
<tr>
<td>1</td>
<td>-1.218459000</td>
<td>-0.632191000</td>
<td>2.870510000</td>
</tr>
<tr>
<td>1</td>
<td>-2.513823000</td>
<td>0.577367000</td>
<td>2.830761000</td>
</tr>
<tr>
<td>6</td>
<td>-1.538647000</td>
<td>-1.528287000</td>
<td>0.191838000</td>
</tr>
<tr>
<td>1</td>
<td>-0.901002000</td>
<td>-2.156817000</td>
<td>0.823547000</td>
</tr>
<tr>
<td>1</td>
<td>-0.884561000</td>
<td>-2.042432000</td>
<td>-0.762188000</td>
</tr>
<tr>
<td>6</td>
<td>-2.354613000</td>
<td>-3.533950000</td>
<td>-0.201598000</td>
</tr>
<tr>
<td>8</td>
<td>-3.547669000</td>
<td>-4.308270000</td>
<td>-1.063850000</td>
</tr>
<tr>
<td>6</td>
<td>-2.990453000</td>
<td>-4.679422000</td>
<td>-1.914190000</td>
</tr>
<tr>
<td>1</td>
<td>-4.457417000</td>
<td>-3.894939000</td>
<td>-1.291633000</td>
</tr>
<tr>
<td>6</td>
<td>-3.846451000</td>
<td>-5.657196000</td>
<td>-0.167062000</td>
</tr>
<tr>
<td>1</td>
<td>-4.646433000</td>
<td>-6.302450000</td>
<td>-0.749095000</td>
</tr>
<tr>
<td>1</td>
<td>-2.924417000</td>
<td>-6.175250000</td>
<td>0.117279000</td>
</tr>
<tr>
<td>1</td>
<td>-4.395158000</td>
<td>-5.389563000</td>
<td>0.742245000</td>
</tr>
<tr>
<td>6</td>
<td>3.962703000</td>
<td>-0.921824000</td>
<td>-0.465287000</td>
</tr>
<tr>
<td>6</td>
<td>5.284525000</td>
<td>-1.172200000</td>
<td>-0.855107000</td>
</tr>
<tr>
<td>6</td>
<td>3.573307000</td>
<td>-1.126163000</td>
<td>0.849022000</td>
</tr>
<tr>
<td>6</td>
<td>6.203132000</td>
<td>-1.720747000</td>
<td>0.047807000</td>
</tr>
<tr>
<td>1</td>
<td>5.599541000</td>
<td>-0.938155000</td>
<td>-1.869637000</td>
</tr>
<tr>
<td>6</td>
<td>4.488340000</td>
<td>-1.769418000</td>
<td>1.753191000</td>
</tr>
<tr>
<td>1</td>
<td>2.550198000</td>
<td>-1.034860000</td>
<td>1.164586000</td>
</tr>
<tr>
<td>6</td>
<td>5.807358000</td>
<td>-2.019758000</td>
<td>1.354158000</td>
</tr>
<tr>
<td>1</td>
<td>7.225169000</td>
<td>-1.909641000</td>
<td>-0.270407000</td>
</tr>
<tr>
<td>1</td>
<td>4.172626000</td>
<td>-2.001461000</td>
<td>2.767194000</td>
</tr>
<tr>
<td>1</td>
<td>6.518993000</td>
<td>-2.444308000</td>
<td>2.057484000</td>
</tr>
<tr>
<td>6</td>
<td>2.560411000</td>
<td>-1.199297000</td>
<td>-1.847224000</td>
</tr>
<tr>
<td>6</td>
<td>3.620367000</td>
<td>-0.270026000</td>
<td>-1.956994000</td>
</tr>
<tr>
<td>6</td>
<td>4.855428000</td>
<td>-0.679167000</td>
<td>-2.490443000</td>
</tr>
<tr>
<td>6</td>
<td>5.072523000</td>
<td>-2.008340000</td>
<td>-2.846832000</td>
</tr>
<tr>
<td>6</td>
<td>4.036011000</td>
<td>-2.936333000</td>
<td>-2.692900000</td>
</tr>
<tr>
<td>6</td>
<td>2.788575000</td>
<td>-2.533274000</td>
<td>-2.213637000</td>
</tr>
<tr>
<td>6</td>
<td>3.117113000</td>
<td>1.449597000</td>
<td>-0.055390000</td>
</tr>
<tr>
<td>6</td>
<td>3.506907000</td>
<td>1.159985000</td>
<td>-1.525204000</td>
</tr>
<tr>
<td>1</td>
<td>5.653732000</td>
<td>0.051765000</td>
<td>-2.584863000</td>
</tr>
<tr>
<td>1</td>
<td>6.039052000</td>
<td>-2.319052000</td>
<td>-3.232516000</td>
</tr>
<tr>
<td>1</td>
<td>4.191695000</td>
<td>-3.977447000</td>
<td>-2.963492000</td>
</tr>
<tr>
<td>1</td>
<td>1.982892000</td>
<td>-3.256061000</td>
<td>-2.134970000</td>
</tr>
<tr>
<td>16</td>
<td>0.927792000</td>
<td>-0.595624000</td>
<td>-1.400544000</td>
</tr>
<tr>
<td>8</td>
<td>3.845699000</td>
<td>2.086888000</td>
<td>-2.240856000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>3.405019000</td>
<td>0.653027000</td>
<td>0.843367000</td>
</tr>
<tr>
<td>6</td>
<td>2.208690000</td>
<td>3.208485000</td>
<td>1.432857000</td>
</tr>
<tr>
<td>1</td>
<td>2.059063000</td>
<td>2.359235000</td>
<td>2.105543000</td>
</tr>
<tr>
<td>1</td>
<td>3.061583000</td>
<td>3.783576000</td>
<td>1.814879000</td>
</tr>
<tr>
<td>7</td>
<td>2.540450000</td>
<td>2.652720000</td>
<td>0.118738000</td>
</tr>
<tr>
<td>1</td>
<td>2.472941000</td>
<td>3.257242000</td>
<td>-0.693140000</td>
</tr>
<tr>
<td>6</td>
<td>0.216852000</td>
<td>-2.709579000</td>
<td>0.329680000</td>
</tr>
<tr>
<td>8</td>
<td>-0.195050000</td>
<td>-3.866663000</td>
<td>0.537136000</td>
</tr>
<tr>
<td>6</td>
<td>-0.042399000</td>
<td>-1.437570000</td>
<td>-0.913161000</td>
</tr>
<tr>
<td>1</td>
<td>-1.429221000</td>
<td>-5.036351000</td>
<td>0.854486000</td>
</tr>
<tr>
<td>6</td>
<td>-0.066529000</td>
<td>1.597065000</td>
<td>0.843367000</td>
</tr>
<tr>
<td>6</td>
<td>2.049315000</td>
<td>5.922740000</td>
<td>1.700788000</td>
</tr>
<tr>
<td>6</td>
<td>-1.322065000</td>
<td>5.706225000</td>
<td>1.261559000</td>
</tr>
<tr>
<td>1</td>
<td>-2.406889000</td>
<td>3.865688000</td>
<td>0.938571000</td>
</tr>
<tr>
<td>6</td>
<td>0.938336000</td>
<td>7.355915000</td>
<td>1.603567000</td>
</tr>
<tr>
<td>1</td>
<td>-2.209508000</td>
<td>6.332372000</td>
<td>1.219930000</td>
</tr>
<tr>
<td>6</td>
<td>0.938336000</td>
<td>-1.948330000</td>
<td>1.458320000</td>
</tr>
<tr>
<td>1</td>
<td>1.990982000</td>
<td>-1.817232000</td>
<td>1.188808000</td>
</tr>
<tr>
<td>6</td>
<td>0.505151000</td>
<td>-0.948840000</td>
<td>1.561573000</td>
</tr>
<tr>
<td>6</td>
<td>0.862255000</td>
<td>-2.692900000</td>
<td>2.769575000</td>
</tr>
<tr>
<td>8</td>
<td>1.721129000</td>
<td>-3.452423000</td>
<td>3.189175000</td>
</tr>
<tr>
<td>8</td>
<td>-0.274123000</td>
<td>-2.419917000</td>
<td>3.432465000</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>-0.488340000</td>
<td>-3.100525000</td>
<td>4.701024000</td>
</tr>
<tr>
<td>1</td>
<td>-0.472695000</td>
<td>-4.179118000</td>
<td>4.518701000</td>
</tr>
<tr>
<td>1</td>
<td>0.340509000</td>
<td>-2.849669000</td>
<td>5.369569000</td>
</tr>
<tr>
<td>6</td>
<td>-1.822768000</td>
<td>-2.636218000</td>
<td>5.251735000</td>
</tr>
<tr>
<td>1</td>
<td>-2.640770000</td>
<td>-2.886655000</td>
<td>4.567689000</td>
</tr>
<tr>
<td>1</td>
<td>-2.012270000</td>
<td>-3.133596000</td>
<td>6.209598000</td>
</tr>
<tr>
<td>1</td>
<td>-1.824843000</td>
<td>-1.554039000</td>
<td>5.421179000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>1.602782000</th>
<th>1.854938000</th>
<th>0.633509000</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.518743000</td>
<td>1.842090000</td>
<td>-0.259565000</td>
</tr>
<tr>
<td>6</td>
<td>0.257115000</td>
<td>2.994265000</td>
<td>-1.021354000</td>
</tr>
<tr>
<td>6</td>
<td>1.028060000</td>
<td>4.149401000</td>
<td>-0.880757000</td>
</tr>
<tr>
<td>6</td>
<td>2.090213000</td>
<td>4.158851000</td>
<td>0.030186000</td>
</tr>
<tr>
<td>6</td>
<td>2.378118000</td>
<td>3.016172000</td>
<td>0.777271000</td>
</tr>
<tr>
<td>6</td>
<td>-1.526876000</td>
<td>0.500648000</td>
<td>0.607857000</td>
</tr>
<tr>
<td>6</td>
<td>-0.429878000</td>
<td>0.687080000</td>
<td>-0.462728000</td>
</tr>
<tr>
<td>1</td>
<td>-0.575368000</td>
<td>2.980921000</td>
<td>-1.720581000</td>
</tr>
<tr>
<td>1</td>
<td>0.802098000</td>
<td>5.030100000</td>
<td>-1.475526000</td>
</tr>
<tr>
<td>1</td>
<td>2.704209000</td>
<td>5.048025000</td>
<td>0.148946000</td>
</tr>
<tr>
<td>1</td>
<td>3.221529000</td>
<td>3.015380000</td>
<td>1.464184000</td>
</tr>
<tr>
<td>16</td>
<td>2.082876000</td>
<td>0.394572000</td>
<td>1.554450000</td>
</tr>
<tr>
<td>8</td>
<td>-0.617057000</td>
<td>0.204427000</td>
<td>-1.592166000</td>
</tr>
<tr>
<td>8</td>
<td>-1.565844000</td>
<td>1.175589000</td>
<td>1.646767000</td>
</tr>
<tr>
<td>6</td>
<td>-3.581283000</td>
<td>0.818794000</td>
<td>1.075630000</td>
</tr>
<tr>
<td>1</td>
<td>-3.436992000</td>
<td>-1.848402000</td>
<td>1.425578000</td>
</tr>
<tr>
<td>1</td>
<td>-3.569496000</td>
<td>-0.168226000</td>
<td>1.955133000</td>
</tr>
<tr>
<td>7</td>
<td>-2.446869000</td>
<td>-0.420373000</td>
<td>0.252522000</td>
</tr>
<tr>
<td>1</td>
<td>-2.297239000</td>
<td>-0.871886000</td>
<td>-0.644351000</td>
</tr>
<tr>
<td>6</td>
<td>1.262228000</td>
<td>1.798118000</td>
<td>0.024621000</td>
</tr>
<tr>
<td>8</td>
<td>0.546977000</td>
<td>-2.812417000</td>
<td>-0.195227000</td>
</tr>
<tr>
<td>6</td>
<td>0.932625000</td>
<td>-0.824679000</td>
<td>0.998236000</td>
</tr>
<tr>
<td>1</td>
<td>0.142544000</td>
<td>-1.079094000</td>
<td>1.697900000</td>
</tr>
<tr>
<td>6</td>
<td>-4.907585000</td>
<td>-0.709254000</td>
<td>0.344235000</td>
</tr>
<tr>
<td>6</td>
<td>-5.323488000</td>
<td>-0.512771000</td>
<td>-0.208152000</td>
</tr>
<tr>
<td>6</td>
<td>-5.747896000</td>
<td>-1.823818000</td>
<td>0.226858000</td>
</tr>
<tr>
<td>6</td>
<td>-6.553760000</td>
<td>0.616656000</td>
<td>-0.861197000</td>
</tr>
<tr>
<td>1</td>
<td>-4.679030000</td>
<td>1.385249000</td>
<td>-0.127282000</td>
</tr>
<tr>
<td>6</td>
<td>-6.983008000</td>
<td>-1.723250000</td>
<td>-0.425273000</td>
</tr>
<tr>
<td>1</td>
<td>-5.435937000</td>
<td>-2.777900000</td>
<td>0.646285000</td>
</tr>
<tr>
<td>6</td>
<td>-7.388856000</td>
<td>-0.502544000</td>
<td>-0.970994000</td>
</tr>
<tr>
<td>1</td>
<td>-6.862909000</td>
<td>1.570092000</td>
<td>-1.282293000</td>
</tr>
<tr>
<td>1</td>
<td>-7.622078000</td>
<td>-2.598684000</td>
<td>-0.508773000</td>
</tr>
<tr>
<td>1</td>
<td>-8.346214000</td>
<td>-0.421754000</td>
<td>-1.479389000</td>
</tr>
<tr>
<td>6</td>
<td>2.474538000</td>
<td>-1.567342000</td>
<td>-0.890829000</td>
</tr>
</tbody>
</table>

INT-3
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.354603000</td>
<td>-2.219312000</td>
<td>-1.764914000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>2.521136000</td>
<td>-0.536290000</td>
<td>-1.252087000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>3.801036000</td>
<td>-1.927420000</td>
<td>-0.252080000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>8</td>
<td>3.957890000</td>
<td>-2.773394000</td>
<td>0.614004000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>8</td>
<td>4.814984000</td>
<td>-1.232168000</td>
<td>0.751974000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>6.159162000</td>
<td>-1.530705000</td>
<td>-0.325743000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>6.358128000</td>
<td>-2.592014000</td>
<td>-0.502087000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>6.193705000</td>
<td>-1.346024000</td>
<td>0.751974000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>7.121321000</td>
<td>-0.638207000</td>
<td>-1.085643000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>8.144897000</td>
<td>-0.842056000</td>
<td>-0.751546000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>7.068299000</td>
<td>-0.827525000</td>
<td>-2.163218000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>6.905526000</td>
<td>0.420148000</td>
<td>-0.903782000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>1.554859000</td>
<td>1.795589000</td>
<td>0.638738000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>0.459587000</td>
<td>1.702067000</td>
<td>-0.229830000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>0.105876000</td>
<td>2.826738000</td>
<td>-0.989990000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>0.809336000</td>
<td>4.028798000</td>
<td>-0.873152000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>1.889284000</td>
<td>4.112831000</td>
<td>0.012923000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>2.265390000</td>
<td>2.997258000</td>
<td>0.764621000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-1.522790000</td>
<td>0.316618000</td>
<td>0.670915000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-0.390686000</td>
<td>0.454392000</td>
<td>-0.378851000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-0.738083000</td>
<td>2.754279000</td>
<td>-1.671812000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>0.517937000</td>
<td>4.889774000</td>
<td>-1.468719000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>2.448909000</td>
<td>5.039834000</td>
<td>0.109526000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>3.119801000</td>
<td>3.054059000</td>
<td>1.435203000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>16</td>
<td>2.067516000</td>
<td>0.342992000</td>
<td>1.547331000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>8</td>
<td>-0.612184000</td>
<td>-0.020947000</td>
<td>-1.524180000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>8</td>
<td>-1.555702000</td>
<td>0.970228000</td>
<td>1.724763000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-3.633553000</td>
<td>-0.933851000</td>
<td>1.081017000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-3.556584000</td>
<td>-1.984740000</td>
<td>1.386243000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-3.593933000</td>
<td>-0.325076000</td>
<td>1.989683000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>7</td>
<td>-2.467465000</td>
<td>-0.568978000</td>
<td>0.289982000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-2.321950000</td>
<td>-0.988394000</td>
<td>-0.623997000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>1.374718000</td>
<td>-1.796111000</td>
<td>-0.121479000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>8</td>
<td>0.718822000</td>
<td>-2.825786000</td>
<td>-0.385665000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>0.934408000</td>
<td>-0.847404000</td>
<td>0.861048000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>0.208725000</td>
<td>-1.232691000</td>
<td>1.571873000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-4.945177000</td>
<td>-0.713474000</td>
<td>0.346871000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-5.255564000</td>
<td>0.535601000</td>
<td>-0.214123000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-5.879972000</td>
<td>-1.751452000</td>
<td>0.239283000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-6.474083000</td>
<td>0.740764000</td>
<td>-0.865596000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-4.537868000</td>
<td>1.349597000</td>
<td>-0.142350000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-7.103656000</td>
<td>-1.549112000</td>
<td>-0.410358000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>1</td>
<td>-5.650794000</td>
<td>-2.726385000</td>
<td>0.664484000</td>
<td>1.0000000000</td>
</tr>
<tr>
<td>6</td>
<td>-7.403820000</td>
<td>-0.302055000</td>
<td>-0.964972000</td>
<td>1.0000000000</td>
</tr>
</tbody>
</table>

TS-4
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.699911000</td>
<td>1.714176000</td>
<td>-1.293994000</td>
</tr>
<tr>
<td>1</td>
<td>-7.816110000</td>
<td>-2.366747000</td>
<td>-0.485986000</td>
</tr>
<tr>
<td>1</td>
<td>-8.351696000</td>
<td>-0.142369000</td>
<td>-1.472494000</td>
</tr>
<tr>
<td>6</td>
<td>2.602001000</td>
<td>-1.472489000</td>
<td>-0.981972000</td>
</tr>
<tr>
<td>1</td>
<td>2.544931000</td>
<td>-2.091375000</td>
<td>-1.885650000</td>
</tr>
<tr>
<td>1</td>
<td>2.608637000</td>
<td>-0.424662000</td>
<td>-1.294695000</td>
</tr>
<tr>
<td>6</td>
<td>3.917212000</td>
<td>-1.798664000</td>
<td>-0.301098000</td>
</tr>
<tr>
<td>8</td>
<td>4.074329000</td>
<td>-2.672360000</td>
<td>0.536671000</td>
</tr>
<tr>
<td>8</td>
<td>4.918597000</td>
<td>-1.037715000</td>
<td>-0.773787000</td>
</tr>
<tr>
<td>6</td>
<td>6.253037000</td>
<td>-1.290421000</td>
<td>-0.247995000</td>
</tr>
<tr>
<td>1</td>
<td>6.512547000</td>
<td>-2.332894000</td>
<td>-0.454928000</td>
</tr>
<tr>
<td>1</td>
<td>6.226370000</td>
<td>-1.147970000</td>
<td>0.836294000</td>
</tr>
<tr>
<td>6</td>
<td>7.203923000</td>
<td>-0.322650000</td>
<td>-0.925147000</td>
</tr>
<tr>
<td>1</td>
<td>8.219106000</td>
<td>-0.489894000</td>
<td>-0.547942000</td>
</tr>
<tr>
<td>1</td>
<td>7.212518000</td>
<td>-0.471495000</td>
<td>-2.010286000</td>
</tr>
<tr>
<td>1</td>
<td>6.926582000</td>
<td>0.715853000</td>
<td>-0.714834000</td>
</tr>
<tr>
<td>6</td>
<td>1.163728000</td>
<td>2.695470000</td>
<td>-0.089869000</td>
</tr>
<tr>
<td>6</td>
<td>-0.121582000</td>
<td>2.318808000</td>
<td>0.306948000</td>
</tr>
<tr>
<td>6</td>
<td>-1.196683000</td>
<td>3.156090000</td>
<td>0.003214000</td>
</tr>
<tr>
<td>6</td>
<td>-0.987482000</td>
<td>4.350317000</td>
<td>-0.697111000</td>
</tr>
<tr>
<td>6</td>
<td>0.306514000</td>
<td>4.710508000</td>
<td>-1.094326000</td>
</tr>
<tr>
<td>6</td>
<td>1.394525000</td>
<td>3.885692000</td>
<td>-0.787891000</td>
</tr>
<tr>
<td>6</td>
<td>-0.797071000</td>
<td>-0.081635000</td>
<td>-0.002320000</td>
</tr>
<tr>
<td>6</td>
<td>-0.285916000</td>
<td>0.979842000</td>
<td>1.054893000</td>
</tr>
<tr>
<td>1</td>
<td>-2.197277000</td>
<td>2.872064000</td>
<td>0.320907000</td>
</tr>
<tr>
<td>1</td>
<td>-1.828536000</td>
<td>4.998820000</td>
<td>-0.928953000</td>
</tr>
<tr>
<td>1</td>
<td>0.473518000</td>
<td>5.639958000</td>
<td>-1.632982000</td>
</tr>
<tr>
<td>1</td>
<td>2.391456000</td>
<td>4.172405000</td>
<td>1.054893000</td>
</tr>
<tr>
<td>16</td>
<td>2.445619000</td>
<td>1.553535000</td>
<td>0.393139000</td>
</tr>
<tr>
<td>8</td>
<td>-1.058011000</td>
<td>1.013212000</td>
<td>2.141983000</td>
</tr>
<tr>
<td>8</td>
<td>-0.330668000</td>
<td>-0.204519000</td>
<td>-1.149702000</td>
</tr>
<tr>
<td>6</td>
<td>-2.489159000</td>
<td>-1.899249000</td>
<td>-0.194457000</td>
</tr>
<tr>
<td>1</td>
<td>-2.006565000</td>
<td>-2.002495000</td>
<td>-1.171598000</td>
</tr>
<tr>
<td>1</td>
<td>-2.340859000</td>
<td>-2.839986000</td>
<td>0.349337000</td>
</tr>
<tr>
<td>7</td>
<td>-1.795473000</td>
<td>-0.826447000</td>
<td>0.501133000</td>
</tr>
<tr>
<td>1</td>
<td>-2.052703000</td>
<td>-0.533264000</td>
<td>1.447236000</td>
</tr>
<tr>
<td>6</td>
<td>1.564254000</td>
<td>-0.878122000</td>
<td>1.532778000</td>
</tr>
<tr>
<td>8</td>
<td>1.295532000</td>
<td>-1.498116000</td>
<td>2.558936000</td>
</tr>
<tr>
<td>6</td>
<td>1.287583000</td>
<td>0.601054000</td>
<td>1.464244000</td>
</tr>
<tr>
<td>1</td>
<td>1.356881000</td>
<td>0.995717000</td>
<td>2.478966000</td>
</tr>
<tr>
<td>6</td>
<td>-3.976720000</td>
<td>-1.637359000</td>
<td>-0.358757000</td>
</tr>
<tr>
<td>6</td>
<td>-4.920929000</td>
<td>-2.486353000</td>
<td>0.232873000</td>
</tr>
<tr>
<td>6</td>
<td>-4.431258000</td>
<td>-0.544577000</td>
<td>-1.114642000</td>
</tr>
<tr>
<td>6</td>
<td>-6.292701000</td>
<td>-2.253314000</td>
<td>0.074671000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>-4.583073000</td>
<td>-3.336340000</td>
<td>0.822196000</td>
</tr>
<tr>
<td>6</td>
<td>-5.798346000</td>
<td>-0.307418000</td>
<td>-1.273918000</td>
</tr>
<tr>
<td>1</td>
<td>-3.709038000</td>
<td>0.123360000</td>
<td>-1.578888000</td>
</tr>
<tr>
<td>6</td>
<td>-6.734772000</td>
<td>-1.162657000</td>
<td>-0.678720000</td>
</tr>
<tr>
<td>1</td>
<td>-7.011431000</td>
<td>-2.921928000</td>
<td>0.541901000</td>
</tr>
<tr>
<td>6</td>
<td>-6.134394000</td>
<td>0.541765000</td>
<td>-1.863846000</td>
</tr>
<tr>
<td>1</td>
<td>-7.798846000</td>
<td>-2.921928000</td>
<td>-0.802774000</td>
</tr>
<tr>
<td>6</td>
<td>2.123589000</td>
<td>-1.622478000</td>
<td>0.324737000</td>
</tr>
<tr>
<td>1</td>
<td>1.821539000</td>
<td>-2.673808000</td>
<td>0.401930000</td>
</tr>
<tr>
<td>1</td>
<td>1.722375000</td>
<td>-1.218888000</td>
<td>-0.608481000</td>
</tr>
<tr>
<td>6</td>
<td>3.641278000</td>
<td>-1.584607000</td>
<td>0.279760000</td>
</tr>
<tr>
<td>8</td>
<td>4.361775000</td>
<td>-1.232418000</td>
<td>1.199638000</td>
</tr>
<tr>
<td>8</td>
<td>4.096984000</td>
<td>-2.017117000</td>
<td>-0.903509000</td>
</tr>
<tr>
<td>6</td>
<td>5.543735000</td>
<td>-2.075546000</td>
<td>-1.081202000</td>
</tr>
<tr>
<td>1</td>
<td>5.954118000</td>
<td>-2.745182000</td>
<td>-0.319865000</td>
</tr>
<tr>
<td>1</td>
<td>5.947814000</td>
<td>-1.072492000</td>
<td>-0.918166000</td>
</tr>
<tr>
<td>6</td>
<td>5.811857000</td>
<td>-2.576664000</td>
<td>-2.486440000</td>
</tr>
<tr>
<td>1</td>
<td>6.894087000</td>
<td>-2.631140000</td>
<td>-2.649265000</td>
</tr>
<tr>
<td>1</td>
<td>5.391681000</td>
<td>-3.576941000</td>
<td>-2.633470000</td>
</tr>
<tr>
<td>1</td>
<td>5.385849000</td>
<td>-1.899826000</td>
<td>-3.234725000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.722468000</td>
<td>1.722647000</td>
<td>1.139983000</td>
</tr>
<tr>
<td>6</td>
<td>0.457386000</td>
<td>1.657633000</td>
<td>0.537255000</td>
</tr>
<tr>
<td>6</td>
<td>-0.060770000</td>
<td>2.777231000</td>
<td>-0.117283000</td>
</tr>
<tr>
<td>6</td>
<td>0.693038000</td>
<td>3.953903000</td>
<td>-0.169146000</td>
</tr>
<tr>
<td>6</td>
<td>1.953381000</td>
<td>4.094140000</td>
<td>0.439228000</td>
</tr>
<tr>
<td>6</td>
<td>2.481290000</td>
<td>2.894830000</td>
<td>1.098890000</td>
</tr>
<tr>
<td>6</td>
<td>-1.109481000</td>
<td>-0.102269000</td>
<td>-0.429957000</td>
</tr>
<tr>
<td>6</td>
<td>-0.271328000</td>
<td>0.346293000</td>
<td>0.787676000</td>
</tr>
<tr>
<td>1</td>
<td>-1.041510000</td>
<td>2.735940000</td>
<td>-0.583782000</td>
</tr>
<tr>
<td>1</td>
<td>0.299172000</td>
<td>4.824928000</td>
<td>-0.684381000</td>
</tr>
<tr>
<td>1</td>
<td>2.536194000</td>
<td>4.925245000</td>
<td>0.393339000</td>
</tr>
<tr>
<td>1</td>
<td>3.463379000</td>
<td>2.940123000</td>
<td>1.560122000</td>
</tr>
<tr>
<td>16</td>
<td>2.207079000</td>
<td>0.208082000</td>
<td>1.942356000</td>
</tr>
<tr>
<td>8</td>
<td>-1.161341000</td>
<td>0.474872000</td>
<td>1.903464000</td>
</tr>
<tr>
<td>8</td>
<td>-0.538489000</td>
<td>-0.517310000</td>
<td>-1.448451000</td>
</tr>
<tr>
<td>6</td>
<td>-3.366838000</td>
<td>-0.337458000</td>
<td>-1.387827000</td>
</tr>
<tr>
<td>1</td>
<td>-3.162071000</td>
<td>0.302028000</td>
<td>-2.253791000</td>
</tr>
<tr>
<td>1</td>
<td>-3.164099000</td>
<td>-1.370834000</td>
<td>-1.689560000</td>
</tr>
<tr>
<td>7</td>
<td>-2.436697000</td>
<td>0.021380000</td>
<td>-0.307664000</td>
</tr>
<tr>
<td>1</td>
<td>-2.799283000</td>
<td>0.345912000</td>
<td>0.581852000</td>
</tr>
<tr>
<td>6</td>
<td>1.369326000</td>
<td>-1.582550000</td>
<td>-0.021539000</td>
</tr>
<tr>
<td>8</td>
<td>1.075197000</td>
<td>-2.770727000</td>
<td>-0.060199000</td>
</tr>
<tr>
<td>6</td>
<td>0.826136000</td>
<td>-0.723844000</td>
<td>1.131508000</td>
</tr>
<tr>
<td>1</td>
<td>0.399086000</td>
<td>-1.410417000</td>
<td>1.863640000</td>
</tr>
<tr>
<td>Index</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>-4.800875000</td>
<td>-0.181070000</td>
<td>-0.933552000</td>
</tr>
<tr>
<td>6</td>
<td>-5.466410000</td>
<td>-1.241224000</td>
<td>-0.299937000</td>
</tr>
<tr>
<td>6</td>
<td>-5.481664000</td>
<td>1.029971000</td>
<td>-1.126424000</td>
</tr>
<tr>
<td>6</td>
<td>-6.785807000</td>
<td>-1.092822000</td>
<td>0.137641000</td>
</tr>
<tr>
<td>1</td>
<td>-4.950621000</td>
<td>-2.187621000</td>
<td>-0.152648000</td>
</tr>
<tr>
<td>6</td>
<td>-6.801491000</td>
<td>1.181409000</td>
<td>-0.690139000</td>
</tr>
<tr>
<td>1</td>
<td>-4.978068000</td>
<td>1.855846000</td>
<td>-1.624105000</td>
</tr>
<tr>
<td>6</td>
<td>-7.455920000</td>
<td>0.119939000</td>
<td>-0.056345000</td>
</tr>
<tr>
<td>1</td>
<td>-7.290508000</td>
<td>-1.923492000</td>
<td>0.624066000</td>
</tr>
<tr>
<td>1</td>
<td>-7.318260000</td>
<td>2.124305000</td>
<td>-0.849088000</td>
</tr>
<tr>
<td>6</td>
<td>-8.483000000</td>
<td>0.235324000</td>
<td>0.280012000</td>
</tr>
<tr>
<td>6</td>
<td>2.353164000</td>
<td>-1.003357000</td>
<td>-1.025615000</td>
</tr>
<tr>
<td>1</td>
<td>2.121838000</td>
<td>-1.448263000</td>
<td>-1.999831000</td>
</tr>
<tr>
<td>1</td>
<td>2.253115000</td>
<td>0.077780000</td>
<td>-1.122859000</td>
</tr>
<tr>
<td>6</td>
<td>3.801942000</td>
<td>-1.353994000</td>
<td>-0.703241000</td>
</tr>
<tr>
<td>8</td>
<td>4.171179000</td>
<td>-2.338829000</td>
<td>-0.089034000</td>
</tr>
<tr>
<td>8</td>
<td>4.630250000</td>
<td>-0.443030000</td>
<td>-1.231218000</td>
</tr>
<tr>
<td>6</td>
<td>6.062260000</td>
<td>-0.667553000</td>
<td>-1.063560000</td>
</tr>
<tr>
<td>1</td>
<td>6.309504000</td>
<td>-1.636975000</td>
<td>-1.503580000</td>
</tr>
<tr>
<td>1</td>
<td>6.276297000</td>
<td>-0.706941000</td>
<td>0.008280000</td>
</tr>
<tr>
<td>6</td>
<td>6.786839000</td>
<td>0.473864000</td>
<td>-1.748856000</td>
</tr>
<tr>
<td>1</td>
<td>7.867755000</td>
<td>0.330822000</td>
<td>-1.640208000</td>
</tr>
<tr>
<td>1</td>
<td>6.550775000</td>
<td>0.506171000</td>
<td>-2.817841000</td>
</tr>
<tr>
<td>1</td>
<td>6.521722000</td>
<td>1.436785000</td>
<td>-1.299815000</td>
</tr>
<tr>
<td>1</td>
<td>-0.831978000</td>
<td>1.164098000</td>
<td>2.504651000</td>
</tr>
<tr>
<td>8</td>
<td>-0.676517000</td>
<td>-4.280265000</td>
<td>1.626963000</td>
</tr>
<tr>
<td>1</td>
<td>-0.063805000</td>
<td>-3.774159000</td>
<td>1.053014000</td>
</tr>
<tr>
<td>1</td>
<td>-0.213720000</td>
<td>-5.109050000</td>
<td>1.825382000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.611801000</td>
<td>0.847524000</td>
<td>0.133431000</td>
</tr>
<tr>
<td>6</td>
<td>3.156360000</td>
<td>-0.219318000</td>
<td>-0.651948000</td>
</tr>
<tr>
<td>6</td>
<td>4.066131000</td>
<td>-1.117987000</td>
<td>-1.213231000</td>
</tr>
<tr>
<td>6</td>
<td>5.434925000</td>
<td>-0.939788000</td>
<td>-0.989133000</td>
</tr>
<tr>
<td>6</td>
<td>5.883100000</td>
<td>0.129384000</td>
<td>-0.202198000</td>
</tr>
<tr>
<td>6</td>
<td>4.977909000</td>
<td>1.032767000</td>
<td>0.364353000</td>
</tr>
<tr>
<td>6</td>
<td>1.018629000</td>
<td>-1.423946000</td>
<td>0.017498000</td>
</tr>
<tr>
<td>6</td>
<td>1.652379000</td>
<td>-0.281206000</td>
<td>-0.814092000</td>
</tr>
<tr>
<td>1</td>
<td>3.707299000</td>
<td>-1.942060000</td>
<td>-1.822935000</td>
</tr>
<tr>
<td>1</td>
<td>6.149932000</td>
<td>-1.629571000</td>
<td>-1.428040000</td>
</tr>
<tr>
<td>1</td>
<td>6.947697000</td>
<td>0.267321000</td>
<td>-0.033038000</td>
</tr>
<tr>
<td>1</td>
<td>5.332926000</td>
<td>1.865210000</td>
<td>0.965163000</td>
</tr>
<tr>
<td>16</td>
<td>2.315467000</td>
<td>1.882029000</td>
<td>0.775633000</td>
</tr>
<tr>
<td>8</td>
<td>1.233052000</td>
<td>-0.568712000</td>
<td>-2.148041000</td>
</tr>
<tr>
<td>8</td>
<td>1.279648000</td>
<td>-2.600924000</td>
<td>-0.108630000</td>
</tr>
<tr>
<td>6</td>
<td>-0.912224000</td>
<td>-1.847689000</td>
<td>1.550311000</td>
</tr>
</tbody>
</table>

TS-5
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.320943000</td>
<td>-2.691707000</td>
<td>1.919331000</td>
<td>1.919331000</td>
</tr>
<tr>
<td>1</td>
<td>-1.315859000</td>
<td>-1.325622000</td>
<td>2.420224000</td>
<td>2.420224000</td>
</tr>
<tr>
<td>7</td>
<td>0.092904000</td>
<td>-0.896135000</td>
<td>1.060829000</td>
<td>1.060829000</td>
</tr>
<tr>
<td>1</td>
<td>0.690203000</td>
<td>-0.567941000</td>
<td>2.015490000</td>
<td>2.015490000</td>
</tr>
<tr>
<td>6</td>
<td>-0.286704000</td>
<td>0.699526000</td>
<td>0.523156000</td>
<td>0.523156000</td>
</tr>
<tr>
<td>8</td>
<td>-0.536339000</td>
<td>1.397721000</td>
<td>1.614060000</td>
<td>1.614060000</td>
</tr>
<tr>
<td>6</td>
<td>1.033795000</td>
<td>1.026387000</td>
<td>-0.256163000</td>
<td>-0.256163000</td>
</tr>
<tr>
<td>1</td>
<td>0.783990000</td>
<td>1.703769000</td>
<td>-1.074407000</td>
<td>-1.074407000</td>
</tr>
<tr>
<td>6</td>
<td>-2.057965000</td>
<td>-2.344322000</td>
<td>0.687877000</td>
<td>0.687877000</td>
</tr>
<tr>
<td>6</td>
<td>-3.371743000</td>
<td>-2.018840000</td>
<td>1.060829000</td>
<td>1.060829000</td>
</tr>
<tr>
<td>6</td>
<td>-1.863786000</td>
<td>-3.189147000</td>
<td>-0.417510000</td>
<td>-0.417510000</td>
</tr>
<tr>
<td>6</td>
<td>-4.466421000</td>
<td>-2.504637000</td>
<td>0.340005000</td>
<td>0.340005000</td>
</tr>
<tr>
<td>1</td>
<td>-1.956994000</td>
<td>-3.667559000</td>
<td>-1.455400000</td>
<td>-1.455400000</td>
</tr>
<tr>
<td>6</td>
<td>-0.860247000</td>
<td>-3.481376000</td>
<td>-0.707141000</td>
<td>-0.707141000</td>
</tr>
<tr>
<td>6</td>
<td>-4.261088000</td>
<td>-3.326827000</td>
<td>-0.771595000</td>
<td>-0.771595000</td>
</tr>
<tr>
<td>1</td>
<td>-5.474750000</td>
<td>-2.239437000</td>
<td>0.646942000</td>
<td>0.646942000</td>
</tr>
<tr>
<td>1</td>
<td>-2.787884000</td>
<td>-4.317089000</td>
<td>-2.000560000</td>
<td>-2.000560000</td>
</tr>
<tr>
<td>1</td>
<td>-5.108726000</td>
<td>-3.705303000</td>
<td>-1.367990000</td>
<td>-1.367990000</td>
</tr>
<tr>
<td>6</td>
<td>-1.493635000</td>
<td>0.642133000</td>
<td>-0.448648000</td>
<td>-0.448648000</td>
</tr>
<tr>
<td>1</td>
<td>-1.251626000</td>
<td>0.063930000</td>
<td>-1.346475000</td>
<td>-1.346475000</td>
</tr>
<tr>
<td>1</td>
<td>-2.335053000</td>
<td>0.175246000</td>
<td>0.058107000</td>
<td>0.058107000</td>
</tr>
<tr>
<td>6</td>
<td>-1.896011000</td>
<td>2.039237000</td>
<td>-0.885362000</td>
<td>-0.885362000</td>
</tr>
<tr>
<td>8</td>
<td>-1.223175000</td>
<td>2.764028000</td>
<td>-1.603555000</td>
<td>-1.603555000</td>
</tr>
<tr>
<td>8</td>
<td>-3.096169000</td>
<td>2.387070000</td>
<td>-0.401524000</td>
<td>-0.401524000</td>
</tr>
<tr>
<td>6</td>
<td>-3.601470000</td>
<td>3.707873000</td>
<td>-0.756028000</td>
<td>-0.756028000</td>
</tr>
<tr>
<td>1</td>
<td>-3.651139000</td>
<td>3.773243000</td>
<td>-1.846702000</td>
<td>-1.846702000</td>
</tr>
<tr>
<td>1</td>
<td>-2.887836000</td>
<td>4.453926000</td>
<td>-0.394779000</td>
<td>-0.394779000</td>
</tr>
<tr>
<td>6</td>
<td>-4.965281000</td>
<td>3.864336000</td>
<td>-0.112710000</td>
<td>-0.112710000</td>
</tr>
<tr>
<td>1</td>
<td>-5.370710000</td>
<td>4.851104000</td>
<td>-0.362720000</td>
<td>-0.362720000</td>
</tr>
<tr>
<td>1</td>
<td>-5.663757000</td>
<td>3.103891000</td>
<td>-0.478058000</td>
<td>-0.478058000</td>
</tr>
<tr>
<td>1</td>
<td>-4.898806000</td>
<td>3.786711000</td>
<td>0.977732000</td>
<td>0.977732000</td>
</tr>
<tr>
<td>1</td>
<td>1.700464000</td>
<td>0.034199000</td>
<td>-2.752786000</td>
<td>-2.752786000</td>
</tr>
<tr>
<td>8</td>
<td>0.863428000</td>
<td>0.057739000</td>
<td>3.110177000</td>
<td>3.110177000</td>
</tr>
<tr>
<td>1</td>
<td>0.295262000</td>
<td>0.855069000</td>
<td>2.665845000</td>
<td>2.665845000</td>
</tr>
<tr>
<td>1</td>
<td>1.789088000</td>
<td>0.361765000</td>
<td>3.142582000</td>
<td>3.142582000</td>
</tr>
</tbody>
</table>

INT-5

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.609762000</td>
<td>0.727833000</td>
<td>0.173992000</td>
<td>0.173992000</td>
</tr>
<tr>
<td>6</td>
<td>3.227902000</td>
<td>-0.337825000</td>
<td>-0.650251000</td>
<td>-0.650251000</td>
</tr>
<tr>
<td>6</td>
<td>4.187571000</td>
<td>-1.236227000</td>
<td>-1.120090000</td>
<td>-1.120090000</td>
</tr>
<tr>
<td>6</td>
<td>5.528937000</td>
<td>-1.060640000</td>
<td>-0.762864000</td>
<td>-0.762864000</td>
</tr>
<tr>
<td>6</td>
<td>5.900582000</td>
<td>0.006201000</td>
<td>0.065191000</td>
<td>0.065191000</td>
</tr>
<tr>
<td>6</td>
<td>4.945397000</td>
<td>0.911715000</td>
<td>0.540352000</td>
<td>0.540352000</td>
</tr>
<tr>
<td>6</td>
<td>1.016177000</td>
<td>-1.487771000</td>
<td>-0.105888000</td>
<td>-0.105888000</td>
</tr>
<tr>
<td>6</td>
<td>1.746471000</td>
<td>-0.403070000</td>
<td>-0.936683000</td>
<td>-0.936683000</td>
</tr>
</tbody>
</table>
1 3.88685000 -2.060322000 -1.761228000
1 6.281977000 -1.752192000 -1.129703000
1 6.943719000 0.141683000 0.338379000
1 5.241277000 1.744043000 1.172663000
16 2.259019000 1.776339000 0.669519000
8 1.434763000 1.776339000 0.669519000
8 1.362602000 -2.664742000 -0.026433000
6 -0.959712000 1.710585000 0.669519000
1 1.748480000 1.014176000 3.533694000
6 -0.274645000 0.506744000 0.200719000
8 -0.610749000 1.218108000 1.359459000
6 1.078590000 0.916320000 -0.469497000
1 0.891556000 1.586691000 -1.308177000
6 -2.190453000 -2.295412000 0.680614000
6 -3.455698000 -2.100520000 1.250881000
6 -2.085936000 -3.069200000 -0.486050000
6 -4.597400000 -2.663491000 0.669540000
1 -3.551483000 -1.501302000 2.153914000
6 -3.224826000 -3.627464000 -1.071740000
1 -1.111522000 -3.236819000 -0.935795000
6 -4.484998000 -3.427130000 -0.495380000
1 -5.571074000 -2.499716000 1.124360000
1 -3.128222000 -4.223197000 -1.975970000
1 -5.369955000 -3.863150000 -0.951766000
6 -1.464829000 0.701072000 -0.771734000
1 -1.213545000 0.246164000 -1.734918000
1 -2.340068000 0.193426000 -0.365414000
6 -1.792484000 2.164782000 -1.005231000
8 -1.051438000 2.960094000 -1.562910000
8 -3.007847000 2.484424000 -0.540773000
6 -3.446268000 3.864297000 -0.712342000
1 -3.434726000 4.095578000 -1.781320000
1 -2.726856000 4.515315000 -0.207490000
6 -4.836105000 3.980268000 -0.115105000
1 -5.192807000 5.009877000 -0.233243000
1 -5.540236000 3.314132000 -0.628026000
1 -4.830554000 3.736298000 0.949598000
1 1.952504000 -0.143769000 -2.875226000
8 0.865728000 0.620802000 3.639740000
1 0.008837000 1.018559000 2.104640000
1 0.488632000 1.045459000 4.428212000
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.392413000</td>
<td>0.367525000</td>
<td>5.462024000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.206217000</td>
<td>1.779806000</td>
<td>4.402661000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.640100000</td>
<td>0.195423000</td>
<td>3.712893000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.269952000</td>
<td>-0.856661000</td>
<td>0.189978000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.025110000</td>
<td>-1.790556000</td>
<td>0.594975000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.429469000</td>
<td>-1.415274000</td>
<td>-1.182434000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.950112000</td>
<td>-1.144354000</td>
<td>-2.128529000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.175610000</td>
<td>-2.459254000</td>
<td>-0.973079000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-2.794842000</td>
<td>-0.589972000</td>
<td>-0.121754000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.209164000</td>
<td>-0.812307000</td>
<td>0.784366000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.157399000</td>
<td>-0.844018000</td>
<td>-0.034105000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.933084000</td>
<td>-1.250664000</td>
<td>-1.287613000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.486676000</td>
<td>-0.235493000</td>
<td>-2.083690000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.798579000</td>
<td>-2.088947000</td>
<td>-0.567949000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-6.871290000</td>
<td>-0.053587000</td>
<td>-2.150341000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-7.184272000</td>
<td>-1.911468000</td>
<td>-0.632710000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-7.724213000</td>
<td>-0.891271000</td>
<td>-1.423179000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.829662000</td>
<td>0.414503000</td>
<td>-2.658509000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-5.386045000</td>
<td>-2.883410000</td>
<td>0.044748000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-7.283535000</td>
<td>0.735891000</td>
<td>-2.773696000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-7.840648000</td>
<td>-2.571617000</td>
<td>-0.071285000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-8.801092000</td>
<td>-0.753876000</td>
<td>-1.477017000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.000370000</td>
<td>0.396679000</td>
<td>-0.284253000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-3.232421000</td>
<td>0.880983000</td>
<td>-0.257262000</td>
</tr>
<tr>
<td>6</td>
<td>-3.139519000</td>
<td>-0.451617000</td>
<td>0.165667000</td>
</tr>
<tr>
<td>6</td>
<td>-4.148651000</td>
<td>-1.365200000</td>
<td>-0.155384000</td>
</tr>
<tr>
<td>6</td>
<td>-5.253136000</td>
<td>-0.930357000</td>
<td>-0.889698000</td>
</tr>
<tr>
<td>6</td>
<td>-5.338526000</td>
<td>0.404871000</td>
<td>-1.308736000</td>
</tr>
<tr>
<td>6</td>
<td>-4.330295000</td>
<td>1.321863000</td>
<td>-1.001450000</td>
</tr>
<tr>
<td>6</td>
<td>-1.072591000</td>
<td>-1.827634000</td>
<td>0.243825000</td>
</tr>
<tr>
<td>6</td>
<td>-1.905308000</td>
<td>-0.779231000</td>
<td>0.987559000</td>
</tr>
<tr>
<td>1</td>
<td>-4.073301000</td>
<td>-2.399071000</td>
<td>0.169109000</td>
</tr>
<tr>
<td>1</td>
<td>-6.044941000</td>
<td>-1.629953000</td>
<td>-1.139062000</td>
</tr>
<tr>
<td>1</td>
<td>-6.198839000</td>
<td>0.736054000</td>
<td>-1.883370000</td>
</tr>
<tr>
<td>1</td>
<td>-4.403920000</td>
<td>2.354036000</td>
<td>-1.330024000</td>
</tr>
<tr>
<td>16</td>
<td>-1.893770000</td>
<td>1.920926000</td>
<td>0.276721000</td>
</tr>
<tr>
<td>8</td>
<td>-2.171599000</td>
<td>-1.296652000</td>
<td>2.269892000</td>
</tr>
<tr>
<td>8</td>
<td>-1.243065000</td>
<td>-3.005956000</td>
<td>0.123969000</td>
</tr>
<tr>
<td>6</td>
<td>0.954695000</td>
<td>-1.854998000</td>
<td>-1.314173000</td>
</tr>
<tr>
<td>1</td>
<td>0.396616000</td>
<td>-2.751325000</td>
<td>-1.592486000</td>
</tr>
<tr>
<td>1</td>
<td>1.059407000</td>
<td>-1.230878000</td>
<td>-2.203610000</td>
</tr>
<tr>
<td>7</td>
<td>0.055542000</td>
<td>-1.131158000</td>
<td>-0.371597000</td>
</tr>
<tr>
<td>6</td>
<td>0.152290000</td>
<td>0.109752000</td>
<td>0.042576000</td>
</tr>
<tr>
<td>6</td>
<td>-0.977097000</td>
<td>0.472766000</td>
<td>0.967588000</td>
</tr>
</tbody>
</table>

INT-6
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.596482000</td>
<td>0.724084000</td>
<td>1.958555000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.305928000</td>
<td>-2.206793000</td>
<td>-0.719426000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.473382000</td>
<td>-1.844872000</td>
<td>-1.404925000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.406236000</td>
<td>-2.936536000</td>
<td>0.475080000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.728023000</td>
<td>-2.059830000</td>
<td>-0.903124000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.405386000</td>
<td>-1.285258000</td>
<td>-2.334872000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.659815000</td>
<td>-3.287532000</td>
<td>0.979633000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.510767000</td>
<td>-3.239220000</td>
<td>1.011500000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.823157000</td>
<td>-2.923959000</td>
<td>0.291473000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.625831000</td>
<td>-1.921108000</td>
<td>-1.444486000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.727391000</td>
<td>-3.851542000</td>
<td>1.905731000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.797211000</td>
<td>-3.201548000</td>
<td>0.684820000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.260078000</td>
<td>0.991420000</td>
<td>-0.416928000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.197998000</td>
<td>0.420926000</td>
<td>-0.402182000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.095223000</td>
<td>1.241315000</td>
<td>-1.474704000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.477571000</td>
<td>2.278981000</td>
<td>0.372468000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.970320000</td>
<td>2.535537000</td>
<td>1.448449000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.332664000</td>
<td>3.057453000</td>
<td>-0.280780000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.712509000</td>
<td>4.322251000</td>
<td>0.355238000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.153696000</td>
<td>4.087173000</td>
<td>1.327245000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.800687000</td>
<td>4.904381000</td>
<td>0.511020000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.690155000</td>
<td>5.018555000</td>
<td>-0.568218000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.990820000</td>
<td>5.969989000</td>
<td>-0.115836000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.588813000</td>
<td>4.412325000</td>
<td>-0.722232000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.233450000</td>
<td>5.229773000</td>
<td>-1.540665000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.938631000</td>
<td>-0.830320000</td>
<td>2.646261000</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-2.028072000</td>
<td>2.474567000</td>
<td>-0.401644000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.899815000</td>
<td>3.303376000</td>
<td>-0.452426000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.973428000</td>
<td>4.624511000</td>
<td>-0.000208000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.185713000</td>
<td>5.110897000</td>
<td>0.493554000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.310759000</td>
<td>4.275709000</td>
<td>0.540878000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.243827000</td>
<td>2.952531000</td>
<td>0.096960000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.470126000</td>
<td>2.634125000</td>
<td>-0.016956000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.337336000</td>
<td>2.658187000</td>
<td>-1.049224000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.095725000</td>
<td>5.263188000</td>
<td>-0.038025000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.254424000</td>
<td>6.136180000</td>
<td>0.844208000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.250765000</td>
<td>4.657908000</td>
<td>0.929196000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.119608000</td>
<td>2.311778000</td>
<td>0.137416000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1.774147000</td>
<td>0.839182000</td>
<td>-1.049478000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.843798000</td>
<td>3.322588000</td>
<td>-2.189162000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.155652000</td>
<td>3.542476000</td>
<td>0.371289000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.555645000</td>
<td>0.981019000</td>
<td>1.561582000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.797701000</td>
<td>1.955454000</td>
<td>1.991719000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.014583000</td>
<td>0.409602000</td>
<td>2.317878000</td>
<td></td>
</tr>
</tbody>
</table>

TS-7
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.606910000</td>
<td>1.284972000</td>
<td>0.459586000</td>
</tr>
<tr>
<td>6</td>
<td>0.856654000</td>
<td>0.422853000</td>
<td>-0.223470000</td>
</tr>
<tr>
<td>6</td>
<td>0.034204000</td>
<td>1.145712000</td>
<td>-1.264266000</td>
</tr>
<tr>
<td>1</td>
<td>0.328651000</td>
<td>0.811489000</td>
<td>-2.261126000</td>
</tr>
<tr>
<td>6</td>
<td>3.812753000</td>
<td>0.258410000</td>
<td>1.112164000</td>
</tr>
<tr>
<td>6</td>
<td>4.229560000</td>
<td>-0.897462000</td>
<td>1.789301000</td>
</tr>
<tr>
<td>6</td>
<td>4.603033000</td>
<td>0.757087000</td>
<td>0.065683000</td>
</tr>
<tr>
<td>6</td>
<td>5.406676000</td>
<td>-1.548754000</td>
<td>1.427294000</td>
</tr>
<tr>
<td>1</td>
<td>3.620873000</td>
<td>-1.290158000</td>
<td>2.605342000</td>
</tr>
<tr>
<td>6</td>
<td>5.780739000</td>
<td>0.101943000</td>
<td>-0.300886000</td>
</tr>
<tr>
<td>1</td>
<td>4.307127000</td>
<td>1.659309000</td>
<td>-0.463457000</td>
</tr>
<tr>
<td>6</td>
<td>6.185945000</td>
<td>-1.052176000</td>
<td>0.379371000</td>
</tr>
<tr>
<td>1</td>
<td>5.713133000</td>
<td>-2.443939000</td>
<td>1.961445000</td>
</tr>
<tr>
<td>1</td>
<td>6.384407000</td>
<td>0.496446000</td>
<td>-1.113656000</td>
</tr>
<tr>
<td>1</td>
<td>7.103801000</td>
<td>-1.558863000</td>
<td>0.093885000</td>
</tr>
<tr>
<td>6</td>
<td>0.833040000</td>
<td>-0.990631000</td>
<td>0.059232000</td>
</tr>
<tr>
<td>1</td>
<td>1.726128000</td>
<td>-1.331185000</td>
<td>0.584055000</td>
</tr>
<tr>
<td>1</td>
<td>-0.040662000</td>
<td>-1.185219000</td>
<td>0.896170000</td>
</tr>
<tr>
<td>6</td>
<td>0.495849000</td>
<td>-1.904656000</td>
<td>-1.094769000</td>
</tr>
<tr>
<td>8</td>
<td>-0.192749000</td>
<td>-1.605847000</td>
<td>-2.056088000</td>
</tr>
<tr>
<td>8</td>
<td>1.038191000</td>
<td>-3.108569000</td>
<td>-0.896753000</td>
</tr>
<tr>
<td>6</td>
<td>0.800700000</td>
<td>-4.124175000</td>
<td>-1.921541000</td>
</tr>
<tr>
<td>1</td>
<td>1.203151000</td>
<td>-3.747765000</td>
<td>-2.866017000</td>
</tr>
<tr>
<td>1</td>
<td>-0.279297000</td>
<td>-4.254437000</td>
<td>-2.028237000</td>
</tr>
<tr>
<td>6</td>
<td>1.491014000</td>
<td>-5.395489000</td>
<td>-1.471619000</td>
</tr>
<tr>
<td>1</td>
<td>1.332514000</td>
<td>-6.174297000</td>
<td>-2.225815000</td>
</tr>
<tr>
<td>1</td>
<td>2.569252000</td>
<td>-5.241054000</td>
<td>-1.359120000</td>
</tr>
<tr>
<td>1</td>
<td>1.083368000</td>
<td>-5.751577000</td>
<td>-0.519683000</td>
</tr>
<tr>
<td>1</td>
<td>0.096442000</td>
<td>3.605940000</td>
<td>-2.744890000</td>
</tr>
<tr>
<td>6</td>
<td>-4.359232000</td>
<td>-2.899730000</td>
<td>-0.722075000</td>
</tr>
<tr>
<td>6</td>
<td>-3.227725000</td>
<td>-3.102877000</td>
<td>0.075104000</td>
</tr>
<tr>
<td>6</td>
<td>-3.115069000</td>
<td>-2.487590000</td>
<td>1.329203000</td>
</tr>
<tr>
<td>6</td>
<td>-4.166344000</td>
<td>-1.671541000</td>
<td>1.777464000</td>
</tr>
<tr>
<td>6</td>
<td>-5.296002000</td>
<td>-1.461469000</td>
<td>0.982347000</td>
</tr>
<tr>
<td>6</td>
<td>-5.394555000</td>
<td>-2.075220000</td>
<td>-0.271784000</td>
</tr>
<tr>
<td>1</td>
<td>-4.431090000</td>
<td>-3.386407000</td>
<td>-1.691367000</td>
</tr>
<tr>
<td>1</td>
<td>-2.428420000</td>
<td>-3.749789000</td>
<td>-0.278285000</td>
</tr>
<tr>
<td>1</td>
<td>-4.105690000</td>
<td>-1.202895000</td>
<td>2.758040000</td>
</tr>
<tr>
<td>1</td>
<td>-6.101575000</td>
<td>-0.827831000</td>
<td>1.344666000</td>
</tr>
<tr>
<td>1</td>
<td>-6.274836000</td>
<td>-1.916657000</td>
<td>-0.889335000</td>
</tr>
<tr>
<td>6</td>
<td>-1.891427000</td>
<td>-2.693794000</td>
<td>2.194454000</td>
</tr>
<tr>
<td>1</td>
<td>-2.198946000</td>
<td>-2.907089000</td>
<td>3.226945000</td>
</tr>
<tr>
<td>1</td>
<td>-1.310269000</td>
<td>-3.549523000</td>
<td>1.839021000</td>
</tr>
<tr>
<td>7</td>
<td>-0.992553000</td>
<td>-1.506596000</td>
<td>2.176343000</td>
</tr>
<tr>
<td>1</td>
<td>-1.524314000</td>
<td>-0.654813000</td>
<td>2.362072000</td>
</tr>
<tr>
<td>1</td>
<td>-0.307022000</td>
<td>-1.586477000</td>
<td>0.254522000</td>
</tr>
<tr>
<td>6</td>
<td>-3.413683000</td>
<td>0.885263000</td>
<td>-0.295101000</td>
</tr>
<tr>
<td>6</td>
<td>-3.228459000</td>
<td>-3.149050000</td>
<td>0.250564000</td>
</tr>
<tr>
<td>6</td>
<td>-5.057546000</td>
<td>-0.958158000</td>
<td>-0.305404000</td>
</tr>
<tr>
<td>6</td>
<td>-5.683551000</td>
<td>0.317470000</td>
<td>-0.858840000</td>
</tr>
<tr>
<td>6</td>
<td>-4.641861000</td>
<td>1.249787000</td>
<td>-0.857026000</td>
</tr>
<tr>
<td>6</td>
<td>-1.054921000</td>
<td>-1.658724000</td>
<td>-0.024663000</td>
</tr>
<tr>
<td>6</td>
<td>-1.850257000</td>
<td>-0.641631000</td>
<td>0.824040000</td>
</tr>
<tr>
<td>1</td>
<td>-4.127551000</td>
<td>-2.301084000</td>
<td>0.680416000</td>
</tr>
<tr>
<td>1</td>
<td>-6.327122000</td>
<td>-1.670859000</td>
<td>-0.309640000</td>
</tr>
<tr>
<td>1</td>
<td>-6.642336000</td>
<td>0.592516000</td>
<td>-1.290051000</td>
</tr>
<tr>
<td>1</td>
<td>-4.788803000</td>
<td>2.240268000</td>
<td>-1.278292000</td>
</tr>
<tr>
<td>16</td>
<td>-2.000556000</td>
<td>1.954755000</td>
<td>-0.170556000</td>
</tr>
<tr>
<td>8</td>
<td>-1.867631000</td>
<td>-1.190614000</td>
<td>2.138161000</td>
</tr>
<tr>
<td>8</td>
<td>-1.370839000</td>
<td>-2.815884000</td>
<td>-0.246033000</td>
</tr>
<tr>
<td>6</td>
<td>1.034474000</td>
<td>-1.749651000</td>
<td>-1.364297000</td>
</tr>
<tr>
<td>1</td>
<td>0.481345000</td>
<td>-2.607801000</td>
<td>-1.756742000</td>
</tr>
<tr>
<td>1</td>
<td>1.268975000</td>
<td>-1.093719000</td>
<td>-2.207990000</td>
</tr>
<tr>
<td>7</td>
<td>0.090547000</td>
<td>-1.044584000</td>
<td>-0.490970000</td>
</tr>
<tr>
<td>6</td>
<td>0.247676000</td>
<td>0.265848000</td>
<td>-0.045088000</td>
</tr>
<tr>
<td>6</td>
<td>-1.001629000</td>
<td>0.661698000</td>
<td>0.715263000</td>
</tr>
<tr>
<td>1</td>
<td>-0.749877000</td>
<td>1.055226000</td>
<td>1.699868000</td>
</tr>
<tr>
<td>6</td>
<td>2.310141000</td>
<td>-2.214409000</td>
<td>-0.679053000</td>
</tr>
<tr>
<td>6</td>
<td>3.531425000</td>
<td>-2.114061000</td>
<td>-1.358827000</td>
</tr>
<tr>
<td>6</td>
<td>2.285160000</td>
<td>-2.794088000</td>
<td>0.597484000</td>
</tr>
<tr>
<td>4</td>
<td>4.712094000</td>
<td>-2.587021000</td>
<td>-0.776938000</td>
</tr>
<tr>
<td>1</td>
<td>3.562367000</td>
<td>-1.662636000</td>
<td>-2.348273000</td>
</tr>
<tr>
<td>6</td>
<td>3.468269000</td>
<td>-3.261452000</td>
<td>1.183261000</td>
</tr>
<tr>
<td>1</td>
<td>1.351193000</td>
<td>-2.882129000</td>
<td>1.140572000</td>
</tr>
<tr>
<td>6</td>
<td>4.683787000</td>
<td>-3.160798000</td>
<td>0.497465000</td>
</tr>
<tr>
<td>6</td>
<td>5.651321000</td>
<td>-2.499818000</td>
<td>-1.316898000</td>
</tr>
<tr>
<td>1</td>
<td>3.436673000</td>
<td>-3.705824000</td>
<td>2.174689000</td>
</tr>
<tr>
<td>1</td>
<td>5.600446000</td>
<td>-3.524496000</td>
<td>0.954170000</td>
</tr>
<tr>
<td>6</td>
<td>1.360498000</td>
<td>1.003080000</td>
<td>-0.269550000</td>
</tr>
<tr>
<td>1</td>
<td>2.196916000</td>
<td>0.585327000</td>
<td>-0.815438000</td>
</tr>
<tr>
<td>6</td>
<td>1.518954000</td>
<td>2.374941000</td>
<td>0.212490000</td>
</tr>
<tr>
<td>8</td>
<td>0.683926000</td>
<td>3.028607000</td>
<td>0.832815000</td>
</tr>
<tr>
<td>8</td>
<td>2.737101000</td>
<td>2.860519000</td>
<td>-0.113024000</td>
</tr>
<tr>
<td>6</td>
<td>3.040303000</td>
<td>4.219858000</td>
<td>0.300641000</td>
</tr>
<tr>
<td>1</td>
<td>2.960110000</td>
<td>4.275706000</td>
<td>1.390508000</td>
</tr>
<tr>
<td>1</td>
<td>2.292266000</td>
<td>4.888907000</td>
<td>-0.135412000</td>
</tr>
<tr>
<td>6</td>
<td>4.440953000</td>
<td>4.544552000</td>
<td>-0.181925000</td>
</tr>
</tbody>
</table>
Table S3. Imaginary frequencies (I. F., $i \text{ cm}^{-1}$) of the transition states optimized at the B3LYP-PCM/6-31+G* level of theory in water. All of the minima structures do not have any imaginary frequencies.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>I. F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-1</td>
<td>-39.8</td>
</tr>
<tr>
<td>TS-3</td>
<td>-1075.6</td>
</tr>
<tr>
<td>TS-5</td>
<td>-1292.3</td>
</tr>
<tr>
<td>TS-7</td>
<td>-195.0</td>
</tr>
<tr>
<td>TS-2</td>
<td>-390.5</td>
</tr>
<tr>
<td>TS-4</td>
<td>-53.4</td>
</tr>
<tr>
<td>TS-6</td>
<td>-88.2</td>
</tr>
</tbody>
</table>

Table S4. Electronic energies (E, a.u.), entropies (S, cal/mol·K), and Gibbs free energies (G, a.u.) at the B3LYP/6-31+G* level of theory, and electronic energies (E_{m06}) by the m06/6-311++G** single point computations.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>E</th>
<th>S</th>
<th>G</th>
<th>E_{m06}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-855.92093</td>
<td>100.139</td>
<td>-855.86897</td>
<td>-855.7112257</td>
</tr>
<tr>
<td>3</td>
<td>-326.92879</td>
<td>92.147</td>
<td>-326.82696</td>
<td>-326.7453341</td>
</tr>
<tr>
<td>TS-1</td>
<td>-1182.844</td>
<td>142.123</td>
<td>-1182.65637</td>
<td>-1182.463671</td>
</tr>
<tr>
<td>INT-1</td>
<td>-1182.41178</td>
<td>146.709</td>
<td>-1182.65789</td>
<td>-1182.464529</td>
</tr>
<tr>
<td>3H$^+$</td>
<td>-327.38093</td>
<td>92.407</td>
<td>-327.26327</td>
<td>-327.2060273</td>
</tr>
<tr>
<td>2</td>
<td>-919.96582</td>
<td>116.539</td>
<td>-919.87215</td>
<td>-919.7913957</td>
</tr>
<tr>
<td>TS-2</td>
<td>-2102.36613</td>
<td>215.007</td>
<td>-2102.06821</td>
<td>-2101.811406</td>
</tr>
<tr>
<td>INT-2</td>
<td>-1642.03053</td>
<td>204.838</td>
<td>-1641.72786</td>
<td>-1641.485911</td>
</tr>
<tr>
<td>3H$^+$·Cl$^-$</td>
<td>-787.77922</td>
<td>105.501</td>
<td>-787.66724</td>
<td>-787.5850748</td>
</tr>
<tr>
<td>TS-3</td>
<td>-1968.93908</td>
<td>250.769</td>
<td>-1968.50747</td>
<td>-1968.214894</td>
</tr>
<tr>
<td>INT-3</td>
<td>-1641.55127</td>
<td>202.23</td>
<td>-1641.26092</td>
<td>-1641.013237</td>
</tr>
<tr>
<td>TS-4</td>
<td>-1641.54953</td>
<td>198.595</td>
<td>-1641.2581</td>
<td>-1641.011218</td>
</tr>
<tr>
<td>INT-4</td>
<td>-1641.45604</td>
<td>198.109</td>
<td>-1641.24628</td>
<td>-1641.024139</td>
</tr>
<tr>
<td>INT-4-1</td>
<td>-1718.46242</td>
<td>215.222</td>
<td>-1718.13682</td>
<td>-1717.938106</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-76.43125</td>
<td>47.363</td>
<td>-76.4349</td>
<td>-76.43174217</td>
</tr>
<tr>
<td>TS-5</td>
<td>-1718.40841</td>
<td>200.38</td>
<td>-1718.08053</td>
<td>-1717.884242</td>
</tr>
<tr>
<td>INT-5</td>
<td>-1718.74382</td>
<td>209.227</td>
<td>-1718.14393</td>
<td>-1717.953093</td>
</tr>
<tr>
<td>INT-6</td>
<td>-1566.00289</td>
<td>187.969</td>
<td>-1565.70635</td>
<td>-1565.487351</td>
</tr>
<tr>
<td>TS-7</td>
<td>-1892.938</td>
<td>229.227</td>
<td>-1892.50867</td>
<td>-1892.239946</td>
</tr>
<tr>
<td>4</td>
<td>-1565.59759</td>
<td>185.881</td>
<td>-1565.31206</td>
<td>-1565.07252</td>
</tr>
</tbody>
</table>
Computational Methods

All calculations were finished using the Gaussian 09 computational program. Geometrical optimizations were performed by the B3LYP density functional method with the 6-31+g* basis set for all elements. The default self-consistent reaction field polarizable continuum model (PCM) was used to consider the solvation effects of water. All of the resultant stationary point geometries were characterized by vibrational analyses, from which zero-point energies and Gibbs free-energies were obtained, in addition to confirming whether all of the structures resided at minima or first-order saddle points on the potential energy surfaces. The contributions of small-frequency vibrations to the computed entropies were corrected by the quasi-RRHO approach.

Considering the default entropic data obtained from the Gaussian output files are the idea-gas-phase entropies, which would exaggerate the activation entropies for the bimolecular reaction in solution. Hence, the default entropies are scaled by a factor of 0.5 in Gibbs free-energy determinations.

To refined the electronic energies, the m06 density functional method and 6-311++G** basis set for all elements were used in singlet point calculations, in which the SMD solvation method was used.

10. References

(3) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,

11. X-ray crystal structures

4a

4w