Hofmann reaction-involving annulation of *o*-(pyridin-2-yl)aryl amides selectively and rapidly leads to potential potocatalytic active 6*H*-pyrido[1,2-*c*]quinazolin-6-one derivatives

Wenjing Gao,^{†a} Yameng Wan,^{†a} Zhiguo Zhang,^{*a} Hao Wu,^a Tongxin Liu^a and Guisheng Zhang^{*a}

Supporting Information

Table of Contents

I. Analytical data of compounds	2-25
II. NMR spectra copies of synthesized compounds	26-87
III. X-ray single crystal diffraction data of 3a	88-91
IV. Photophysical and Redox Properties of 2a and 3a	92-95
V. References	96

^{a.} Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. E-mail: zhangzg@htu.edu.cn or zgs@htu.cn [†]These authors contributed equally to the publication

I. Analytical data of compounds

All the compounds of **1** were synthesized by following the procedure described in literature.¹

2-(pyridin-2-yl) benzamide (1a).

The product was isolated by flash chromatography (eluent: EA) as a white solid (158.4 mg, 80%); mp: 134-136 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.52 (t, J = 7.5, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.28 (t, J = 6.6, 3H), 7.21 (t, J = 6.9, 1H), 7.05 (t, J = 6.0 Hz, 1H), 6.20 (s, 1H), 5.87 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 158.2, 149.0, 138.7, 136.7, 135.3, 130.3, 130.1, 128.5, 123.9, 122.4. HRMS (ESI), m/z calcd. for C₁₂H₁₀N₂NaO ([M+Na]⁺) 221.0685, found: 221.0683.

5-methoxy-2-(pyridin-2-yl)benzamide (1b).

The product was isolated by flash chromatography (eluent: EA) as a white solid (193.8 mg, 85%); mp: 142-144 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.4 Hz, 1H), 7.68 (td, *J* = 7.8, 2.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.21-7.17 (m, 1H), 7.15 (d, *J* = 2.8 Hz, 1H), 6.97 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.67 (s, 1H), 6.14 (s, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 159.6, 157.9, 148.9, 136.6, 131.6, 131.0, 123.9, 122.0, 116.3, 113.5, 55.5. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂N₂NaO₂ ([M+Na]⁺) 251.0791, found: 251.0786.

5-(tert-butyl)-2-(pyridin-2-yl)benzamide (1c).

The product was isolated by flash chromatography (eluent: EA) as a white solid (216.0 mg, 85%); mp: 130-132 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 3.6 Hz, 1H), 7.75-7.72 (m, 2H), 7.54-7.51 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.26 (t, *J* = 6.0 Hz, 1H), 6.30 (s, 1H), 5.79 (s, 1H), 1.36 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 158.4, 151.9, 149.1, 136.7, 135.8, 134.8, 130.0, 127.5, 125.7, 124.0, 122.3, 34.8, 31.2. HRMS (ESI), *m/z* calcd. for C₁₆H₁₉N₂O ([M+H]⁺) 255.1492, found: 255.1490.

4-methyl-2-(pyridin-2-yl)benzamide (1d).

The product was isolated by flash chromatography (eluent: EA) as a white solid (184.5 mg, 87%); mp: 135-137 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 4.8 Hz, 1H), 7.73 (m, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.32 (s, 1H), 7.28-7.23 (m, 2H), 6.29 (s, 1H), 5.90 (s, 1H), 2.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 158.6, 149.0, 140.6, 138.7, 136.6, 132.4, 130.9, 129.2, 128.8, 124.1, 122.4, 21.3. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂N₂NaO ([M+Na]⁺) 235.0842, found: 235.0835.

5-methyl-2-(pyridin-2-yl)benzamide (1e).

The product was isolated by flash chromatography (eluent: EA) as a white solid (173.9 mg, 82%); mp: 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 4.8 Hz, 1H), 7.70 (td, *J* = 7.8, 1.6 Hz, 1H), 7.47 (d, *J* = 6.8 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 6.8 Hz, 1H), 7.22 (m, 1H), 6.51 (s, 1H), 6.13 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 158.3, 148.9, 138.6, 136.6, 135.8, 135.2, 130.9, 130.1, 129.2, 124.0, 122.2, 21.1. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂N₂NaO ([M+Na]⁺) 235.0842, found: 235.0840.

2,4-dimethyl-6-(pyridin-2-yl)benzamide (1f).

The product was isolated by flash chromatography (eluent: EA) as a white solid (180.9 mg, 80%); mp: 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60-8.58 (m, 1H), 7.69 (td, *J* = 7.8, 1.7 Hz, 1H), 7.57 (m, 1H), 7.25-7.19 (m, 2H), 7.08 (s, 1H), 5.77 (s, 2H), 2.41 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 158.3, 149.2, 139.0, 137.8, 136.5, 135.3, 132.9, 131.3, 127.7, 123.7, 122.2, 21.2, 19.8. HRMS (ESI), *m/z* calcd. for C₁₄H₁₄N₂NaO ([M+Na]⁺) 249.0998, found: 249.0992.

3-fluoro-2-(pyridin-2-yl)benzamide (1g).

The product was isolated by flash chromatography (eluent: EA) as a white solid (179.3 mg, 83%); mp: 155-157 °C; ¹H NMR (600 MHz, CDCl3) δ 8.63 (d, J = 4.8 Hz, 1H), 7.77 (td, J = 7.8, 1.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.39-7.38 (m, 1H), 7.31-7.29 (m, 1H), 7.22-7.19 (m, 1H), 6.59 (s, 1H), 6.02 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.2 (d, J_{C-F} = 3.0 Hz), 159.8 (d, J_{C-F} = 246.6 Hz), 152.7, 149.2, 137.9 (d, J_{C-F} = 2.0 Hz), 136.6, 130.0 (d, J_{C-F} = 8.6 Hz), 126.7 (d, J_{C-F} = 16.5 Hz), 125.8 (d, J_{C-F} = 2.3 Hz), 124.3 (d, J_{C-F} = 3.5 Hz), 123.0, 117.8 (d, J_{C-F} = 22.8 Hz). HRMS (ESI), *m/z* calcd. for C₁₂H₉FN₂NaO ([M+Na]⁺) 239.0591, found: 239.0590.

5-fluoro-2-(pyridin-2-yl)benzamide (1h).

The product was isolated by flash chromatography (eluent: EA) as a white solid (170.7 mg, 79%); mp: 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61-8.59 (m, 1H), 7.75 (td, J = 7.8, 1.7 Hz, 1H), 7.51-7.47 (m, 2H), 7.38 (dd, J = 8.8, 2.4 Hz, 1H), 7.30-7.26 (m, 1H), 7.21-7.16 (m, 1H), 6.53 (s, 1H), 5.95 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 162.4 (d, $J_{C-F} = 248.4$ Hz), 157.4, 149.1, 137.3 (d, $J_{C-F} = 6.9$ Hz), 136.9, 134.8 (d, $J_{C-F} = 3.5$ Hz), 132.2 (d, $J_{C-F} = 8.0$ Hz), 124.0, 122.6, 117.3 (d, $J_{C-F} = 21.3$ Hz), 115.8 (d, $J_{C-F} = 23.1$ Hz). HRMS (ESI), *m*/*z* calcd. for C₁₂H₉FN₂NaO ([M+Na]⁺) 239.0591, found: 239.0584.

2-(pyridin-2-yl)-5-(trifluoromethyl)benzamide (1i).

The product was isolated by flash chromatography (eluent: EA) as a white solid (226.1 mg, 85%); mp: 168-170 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, *J* = 4.2 Hz, 1H), 7.94 (s, 1H), 7.80 (t, *J* = 7.5 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.35-7.33 (m, 1H), 6.55 (s, 1H), 5.96 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 156.9, 149.3, 141.9, 137.08, 136.0, 130.8, 130.7 (d, *J*_{C-F} = 3.0 Hz), 126.9 (q, *J*_{C-F} = 3.6 Hz), 125.8 (q, *J*_{C-F} = 3.7 Hz), 124.0, 123.6 (d, *J*_{C-F} = 270.9), 123.2. HRMS (ESI), *m*/*z* calcd. for C₁₃H₉F₃N₂NaO ([M+Na]⁺) 289.0559, found: 289.0553.

5-(tert-butyl)-3-cyano-2-(pyridin-2-yl)benzamide (1j).

The product was isolated by flash chromatography (eluent: EA) as a white solid (217.7 mg, 78%); mp: 110-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66-8.64 (m, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.85-7.81 (m, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.52-7.32 (m, 1H), 6.40 (s, 1H), 6.04 (s, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 154.8, 152.8, 149.4, 138.9, 137.2, 136.7, 132.1, 130.1, 125.1, 123.8, 117.8, 113.2,

35.1, 30.9. HRMS (ESI), m/z calcd. for C₁₇H₁₈N₃O ([M+H]⁺) 280.1444, found: 280.1442.

4-(pyridin-2-yl)-[1,1'-biphenyl]-3-carboxamide (1k).

The product was isolated by flash chromatography (eluent: EA) as a white solid (235.7 mg, 86%); mp: 196-198 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 4.2 Hz, 1H), 7.95 (d, J = 1.8 Hz, 1H), 7.79-7.74 (m, 2H), 7.66-7.64 (m, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.31-7.29 (m, 1H), 6.35 (s, 1H), 5.67 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 158.0, 149.2, 141.5, 139.6, 137.4, 136.8, 135.7, 130.8, 129.0, 128.4, 128.0, 127.4, 127.2, 124.0, 122.5. HRMS (ESI), *m*/*z* calcd. for C₁₈H₁₄N₂NaO ([M+Na]⁺) 297.0998, found: 297.0992.

5-(diphenylamino)-2-(pyridin-2-yl)benzamide (11).

The product was isolated by flash chromatography (eluent: EA) as a white solid (281.1 mg, 77%); mp: 230-232 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63-8.61 (m, 1H), 7.73 (td, *J* = 7.8, 1.8 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 9.0 Hz, 1H), 7.35 (d, *J* = 2.4 Hz, 1H), 7.30-7.26 (m, 4H), 7.25-7.23 (m, 1H), 7.18 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.14-7.12 (m, 4H), 7.09-7.06 (m, 2H), 6.15 (s, 1H), 5.60 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 158.0, 149.1, 148.3, 147.1, 136.7, 136.3, 131.9, 131.3, 129.5, 125.0, 124.0, 123.7, 123.7, 122.1, 122.0. HRMS (ESI), *m/z* calcd. For C₂₄H₂₀N₃O ([M+H]⁺) 366.1601, found: 366.1603.

4-(dimethylamino)-2-(pyridin-2-yl)benzamide (1m).

The product was isolated by flash chromatography (eluent: EA) as a white solid (144.6 mg, 60%); mp: 146-148 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.57 (d, J = 4.8 Hz, 1H), 7.76 (t, J = 8.7 Hz, 1H), 7.46-7.36 (m, 3H), 7.32-7.25 (m, 1H), 6.93 (s, 1H), 6.77 (s, 1H), 6.73 (d, J = 9.0 HZ, 1H), 2.96 (s, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.2, 159.7, 151.2, 149.1, 141.0, 136.4, 129.8, 124.8, 123.9, 122.3, 113.8, 111.2, 40.4. HRMS (ESI), m/z calcd. for C₁₄H₁₅N₃NaO ([M+Na]⁺) 264.1107, found: 264.1112.

4-(9*H*-carbazol-9-yl)-2-(pyridin-2-yl)benzamide (1n).

The product was isolated by flash chromatography (eluent: EA) as a white solid (315.8 mg, 87%); mp: 193-195 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, *J* = 4.8 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 2H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.78-7.75 (m, 2H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.49-7.38 (m, 4H), 7.31 (t, *J* = 6.9 Hz, 3H), 6.58 (s, 1H), 5.96 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 157.4, 149.2, 140.8, 140.5, 139.6, 137.1, 134.1, 130.7, 128.5, 126.8, 126.2, 124.1, 123.7, 123.0, 120.5, 109.7. HRMS (ESI), *m/z* calcd. for C₂₄H₁₈N₃O ([M+H]⁺) 364.1444, found: 364.1443.

1-(pyridin-2-yl)-2-naphthamide (10).

The product was isolated by flash chromatography (eluent: EA) as a white solid (213.4 mg, 86%); mp: 193-195 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, *J* = 4.2 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.84 (t, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 9.0 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.48-7.38 (m, 4H), 6.00 (s, 1H), 5.70 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.3, 157.8, 149.4, 137.0, 136.2, 134.3, 132.5, 131.8, 129.0, 128.2, 127.1, 127.1, 126.6, 126.1, 124.8, 122.9. HRMS (ESI), *m/z* calcd. for C₁₆H₁₂N₂NaO ([M+Na]⁺) 271.0842, found: 271.0840.

4-methyl-2-(pyridin-2-yl)quinoline-3-carboxamide (1p).

The product was isolated by flash chromatography (eluent: EA) as a white solid (131.5 mg, 50%); mp: 154-156 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, *J* = 4.8 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.85 (t, *J* = 7.8 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.36-7.34 (m, 1H), 5.86 (s, 2H), 2.85 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 156.1, 152.3, 147.5, 145.9, 141.9, 135.9, 129.4, 129.1, 128.3, 126.39, 126.0, 123.2, 122.7, 122.7, 14.58. HRMS (ESI), *m/z* calcd. for C₁₆H₁₄N₃O ([M+H]⁺) 264.1131, found: 264.1125.

4-methyl-3-(pyridin-2-yl)quinoline-2-carboxamide (1q).

The product was isolated by flash chromatography (eluent: EA) as a white solid (105.2 mg, 40%); mp: 164-166 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.71-8.70 (m, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.83 (s, 1H), 7.80-7.77 (m, 2H), 7.70-7.67 (m, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.33-7.31 (m, 1H), 5.43 (s, 1H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.5, 158.1, 149.2, 147.9, 145.6, 144.7, 135.8, 133.0, 130.4, 129.9, 128.8, 128.3, 124.7, 124.3, 122.0, 15.6. HRMS (ESI), *m/z* calcd. for C₁₆H₁₄N₃O ([M+H]⁺) 264.1131, found: 264.1126.

2-(pyridin-2-yl)thiophene-3-carboxamide (1r).

The product was isolated by flash chromatography (eluent: EA) as a white solid (185.6 mg, 91%); mp: 178-180 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.57 (d, J = 4.8 Hz, 1H), 8.05 (s, 1H), 7.83 (d, J = 3.6 Hz, 2H), 7.63 (d, J = 5.2 Hz, 1H), 7.52 (s, 1H), 7.34-7.31 (m, 1H), 7.23 (d, J = 5.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 167.1, 150.9, 149.1, 142.5, 137.0, 135.0, 129.2, 127.3, 122.9, 121.8. HRMS (ESI), *m/z* calcd. for C₁₀H₈N₂NaOS ([M+Na]⁺) 227.0250, found: 227.0247.

2-(4-methylpyridin-2-yl)benzamide (1s).

The product was isolated by flash chromatography (eluent: EA) as a white solid (190.9 mg, 90%); mp: 167-169 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 1H), 7.70-7.68 (m, 1H), 7.49-7.43 (m, 3H), 7.32 (s, 1H), 7.10-7.09 (m, 1H), 6.46 (s, 1H), 5.90 (s, 1H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 158.3, 148.8, 148.1, 138.9, 135.2, 130.3, 130.1, 128.7, 128.5, 124.9, 123.6, 21.2. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂N₂NaO ([M+Na]⁺) 235.0842, found: 235.0841.

2-(3-methylpyridin-2-yl)benzamide (1t).

The product was isolated by flash chromatography (eluent: EA) as a white solid (190.9 mg, 90%); mp: 146-148 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, *J* = 4.8 Hz, 1H), 7.84-7.83 (m, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.54-7.53 (m, 1H), 7.50-7.49 (m,

1H), 7.29-7.24 (m, 2H), 6.11 (s, 1H), 5.95 (s, 1H), 2.13 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 158.7, 146.4, 138.5, 138.5, 134.4, 132.5, 130.7, 129.6, 129.0, 128.4, 123.0, 19.4. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂N₂NaO ([M+Na]⁺) 235.0842, found: 235.0839.

2-(4-methoxypyridin-2-yl)benzamide (1u).

The product was isolated by flash chromatography (eluent: EA) as a white solid (205.2 mg, 90%); mp: 138-140 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.42 (d, J = 6.0 Hz, 1H), 7.73 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.53-7.43 (m, 3H), 7.29 (s, 1H), 7.15 (s, 1H), 6.94 (d, J = 6.0 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.6, 165.8, 159.8, 150.8, 138.8, 138.0, 130.2, 129.5, 128.5, 128.0, 109.7, 108.8, 55.71. HRMS (ESI), m/z calcd. for C₁₃H₁₃N₂O₂ ([M+H]⁺) 229.0972, found: 229.0980.

2-(4-bromopyridin-2-yl)benzamide (1v).

The product was isolated by flash chromatography (eluent: EA) as a white solid (231.8 mg, 84%); mp: 160-162 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.51 (d, J = 5.3 Hz, 1H), 7.84 (s, 1H), 7.82 (s, 1H), 7.66-7.61 (m, 2H), 7.56-7.49 (m, 3H), 7.40 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.3, 160.0, 150.7, 137.9, 137.7, 132.4, 130.4, 129.9, 129.1, 128.3, 126.4, 125.6. HRMS (ESI), m/z calcd. for C₁₄H₁₀N₂NaO ([M+Na]⁺) 298.9790, found: 298.9784.

2-(quinolin-2-yl)benzamide (1w).

The product was isolated by flash chromatography (eluent: EA) as a white solid (205.9 mg, 83%); mp: 199-201 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.78-7.73 (m, 2H), 7.65-7.62 (m, 2H), 7.59-7.54 (m, 2H), 7.52-7.48 (m, 1H), 6.35 (s, 1H), 5.79 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 158.6, 147.6, 139.0, 136.7, 135.3, 130.5, 130.4, 130.0, 129.4, 128.9, 128.9, 127.7, 127.1, 126.9, 122.1. HRMS (ESI), *m/z* calcd. for C₁₆H₁₂N₂NaO ([M+Na]⁺) 271.0842, found: 271.0837.

benzo[h]quinoline-10-carboxamide (1x).

The product was isolated by flash chromatography (eluent: EA) as a white solid (204.2 mg, 92%); mp: 298-300 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.90 (dd, J = 4.2, 1.8 Hz, 1H), 8.42 (dd, J = 7.8, 1.8 Hz, 1H), 8.06 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.66 (dd, J = 8.4, 4.2 Hz, 1H), 7.60 (s, 1H), 7.57-7.56 (m, 1H), 7.30 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 173.9, 148.3, 145.5, 137.7, 136.2, 134.3, 128.9, 128.3, 128.0, 127.3, 127.2, 127.0, 126.5, 122.6. HRMS (ESI), *m/z* calcd. for C₁₄H₁₀N₂NaO ([M+Na]⁺) 245.0685, found: 245.0684.

6H-pyrido[1,2-c]quinazolin-6-one (2a).

Yellow solid (35.6 mg, 91%); mp: 214-216 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.70 (d, J = 6.8 Hz, 1H), 9.20 (d, J = 8.4 Hz, 1H), 8.85 (t, J = 8.0 Hz, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.20 (t, J = 7.0 Hz, 1H), 7.91 (t, J = 7.8 Hz 1H), 7.56 (t, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.0, 147.3, 143.8, 137.4, 136.0, 135.9, 125.9, 124.8, 124.7, 122.6, 117.2, 112.5. HRMS (ESI), m/z calcd. for C₁₂H₉N₂O ([M+H]⁺) 197.0709, found: 197.0703.

3-methoxy-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2b).

Yellow solid (44.3 mg, 98%); mp: >300 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.50 (d, J = 6.8 Hz, 1H), 8.86 (d, J = 8.8 Hz, 1H), 8.43-8.38 (m, 2H), 7.81 (t, J = 6.8 Hz, 1H), 6.85 (dd, J = 9.2, 2.4 Hz, 1H), 6.78 (d, J = 2.4 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.7, 153.0, 147.9, 147.0, 141.6, 133.5, 126.9, 121.4, 113.0, 106.7, 105.2, 56.0. HRMS (ESI), m/z calcd. for C₁₃H₁₁N₂O₂ ([M+H]⁺) 227.0815, found: 227.0815.

3-(tert-butyl)-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2c).

Yellow solid (48.3 mg, 96%); mp: 156-158 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.80 (d, J = 6.6 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.26 (t, J = 7.5 Hz, 1H), 8.08 (d, J =9.0 Hz, 1H), 7.69 (t, J = 6.6 Hz, 1H), 7.63 (s, 1H), 7.33 (d, J = 9.0 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 148.0, 140.3, 134.2, 123.0, 122.2, 122.2, 122.2, 120.9, 120.6, 120.4, 35.5, 30.8. HRMS (ESI), m/z calcd. for C₁₆H₁₇N₂O ([M+H]⁺) 253.1335, found: 253.1328.

2-methyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2d).

Yellow solid (37.8 mg, 90%); mp: 216-218 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.83 (d, J = 6.0 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 8.26-8.23 (m, 1H), 7.90 (s, 1H), 7.70 (t, J = 6.9 Hz, 1H), 7.53-7.49 (m, 2H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.0, 147.9, 147.0, 139.9, 137.0, 134.3, 131.5, 126.6, 122.2, 120.8, 120.4, 111.4, 21.3. HRMS (ESI), *m/z* calcd. for C₁₄H₁₅N₂O₂⁺ ([M+MeOH+H]⁺) 243.1128, found: 243.1127.

3-methyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2e).

Yellow solid (41.2 mg, 98%); mp: 220-222 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, J = 6.8 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.21 (t, J = 7.8 Hz, 1H), 8.00 (d, J =8.4 Hz, 1H), 7.65 (t, J = 7.0 Hz, 1H), 7.36 (s, 1H), 7.04 (d, J = 8.4 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 148.1, 147.2, 146.2, 140.0, 134.1, 125.9, 124.1, 123.1, 120.4, 120.3, 109.6, 22.1. HRMS (ESI), *m/z* calcd. for C₁₄H₁₅N₂O₂⁺ ([M+MeOH+H]⁺) 243.1128, found: 243.1128.

2,4-dimethyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2f).

Yellow solid (43.5 mg, 97%); mp: 232-234 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.74-9.72 (m, 1H), 9.25 (d, J = 8.4 Hz, 1H), 8.88-8.85 (m, 1H), 8.46 (s, 1H), 8.21-8.18 (m, 1H), 7.65 (s, 1H), 2.52 (s, 3H), 2.46 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 148.6, 147.7, 144.7, 139.0, 136.3, 134.6, 126.2, 125.0, 123.7, 123.2, 113.0, 20.9, 17.7. HRMS (ESI), m/z calcd. for C₁₄H₁₃N₂O ([M+H]⁺) 225.1022, found: 225.1017.

1-fluoro-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2g).

Yellow solid (41.5 mg, 97%); mp: 236-238 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.97 (d, J = 6.6 Hz, 1H), 9.03 (dd, J = 8.4, 5.4 Hz, 1H), 8.36-8.33 (m, 1H), 7.82 (t, J = 6.6 Hz, 1H), 7.61-7.57 (m, 1H), 7.41 (d, J = 8.4 Hz, 1H), 6.92 (dd, J = 13.2, 7.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 160.5 (d, $J_{C-F} = 255.5$ Hz), 151.8, 146.6, 141.3, 134.8, 134.4 (d, $J_{C-F} = 12.0$ Hz), 125.2 (d, $J_{C-F} = 25.5$ Hz), 122.6 (d, $J_{C-F} = 3.3$ Hz), 121.8, 107.7 (d, $J_{C-F} = 23.3$ Hz), 102.4 (d, $J_{C-F} = 8.6$ Hz), 100.0. HRMS (ESI), m/z calcd. for C₁₃H₁₂FN₂O₂ ([M+MeOH+H]⁺) 247.0877, found: 247.0875.

3-fluoro-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2h).

Yellow solid (41.1 mg, 96%); mp: 191-193 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.71 (d, J = 6.6 Hz, 1H), 9.24 (d, J = 7.8 Hz, 1H), 8.91-8.87 (m, 2H), 8.20 (t, J = 6.9 Hz, 1H), 7.50 (s, 1H), 7.37-7.35 (m, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 164.3 (d, $J_{C-F} = 253.8$ Hz), 145.8 (d, $J_{C-F} = 5.3$ Hz), 142.3, 138.0, 134.2, 127.9 (d, $J_{C-F} = 11.1$ Hz), 123.0, 120.9, 116.5, 111.6 (d, $J_{C-F} = 23.6$ Hz), 108.1, 101.8 (d, $J_{C-F} = 25.8$ Hz). HRMS (ESI), m/z calcd. for C₁₂H₈FN₂O ([M+H]⁺) 215.0615, found: 215.0616.

3-(trifluoromethyl)-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2i).

Yellow solid (48.5 mg, 92%); mp: 244-246 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.93 (d, J = 6.6 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H), 8.41 (t, J = 7.8 Hz, 1H), 8.26 (d, J =9.0 Hz, 1H), 7.88 (t, J = 6.8 Hz, 1H), 7.86 (s, 1H), 7.40 (d, J = 9.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.3, 150.4, 147.8, 146.5, 141.4, 136.2, 135.0, 124.4, 124.3, 124.2 (q, $J_{C-F} = 3.0$ Hz), 121.7 (d, $J_{C-F} = 221.3$ Hz), 117.5 (q, $J_{C-F} = 2.4$ Hz), 113.3. HRMS (ESI), m/z calcd. for C₁₃H₈F₃N₂O ([M+H]⁺) 265.0583, found: 265.0585.

3-(tert-butyl)-6-oxo-6H-pyrido[1,2-c]quinazoline-1-carbonitrile (2j).

Yellow solid (52.6 mg, 95%); mp: 155-157 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.89 (d, J = 6.6 Hz, 1H), 9.61 (d, J = 8.4 Hz, 1H), 9.06-9.04 (m, 1H), 8.34 (t, J = 6.9 Hz, 1H), 8.26 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 28.8 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (150 MHz, DMSO- d_6) δ 158.9, 148.4, 145.7, 144.2, 137.7, 131.9, 126.1, 123.1, 120.4, 119.1, 109.7, 108.3, 36.0, 30.5. HRMS (ESI), m/z calcd. for C₁₇H₁₆N₃O ([M+H]⁺) 278.1288, found: 278.1289.

3-phenyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2k).

Yellow solid (53.9 mg, 99%); mp: 235-237 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.74-9.73 (m, 1H), 9.31 (d, J = 8.4 Hz, 1H), 8.92-8.89 (m, 1H), 8.85 (d, J = 8.4 Hz, 1H), 8.21 (t, J = 6.9 Hz, 1H), 7.93 (dd, J = 8.4, 1.2 Hz, 1H), 7.85-7.78 (m, 3H), 7.60 (t, J = 7.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 148.3, 148.0, 147.8, 144.4, 138.2, 138.1, 136.5, 130.0, 129.9, 127.7, 127.3, 125.2, 124.0, 123.2, 114.5, 112.2. HRMS (ESI), m/z calcd. for C₁₈H₁₃N₂O ([M+H]⁺) 273.1022, found: 273.1023.

3-(diphenylamino)-6*H***-pyrido**[1,2-*c*]**quinazolin-6-one** (21).

Yellow solid (68.9 mg, 95%); mp: 122-124 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.41 (d, J = 6.6 Hz, 1H), 8.88-8.86 (m, 1H), 8.64-8.61 (m, 1H), 8.47 (d, J = 9.0 Hz, 1H), 7.90 (t, J = 6.9 Hz, 1H), 7.52 (t, J = 7.8 Hz, 4H), 7.40-7.31 (m, 6H), 6.82 (dd, J = 9.3, 2.1 Hz, 1H), 6.71 (d, J = 2.4 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 154.5, 148.2, 146.3, 144.8, 144.5, 139.4, 135.1, 130.9, 128.1, 127.7, 127.4, 122.5, 121.9, 115.5, 105.0, 101.4. HRMS (ESI), m/z calcd. for C₂₄H₁₈N₃O ([M+H]⁺) 364.1444, found: 364.1444.

2-(dimethylamino)-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2m).

Black solid (43.0 mg, 90%); mp: 194-196 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.62 (d, J = 7.2 Hz, 1H), 9.07 (d, J = 8.4 Hz, 1H), 8.45 (t, J = 1.8 Hz 1H), 7.92 (t, J = 6.8 Hz, 1H), 7.48 (s, 1H), 7.44-7.42 (m, 1H), 7.28 (d, J = 9.0 Hz, 1H), 2.98 (s, 6H).¹³C NMR (150 MHz, DMSO- d_6) δ 147.1, 146.3, 146.1, 143.3, 141.1, 133.8, 126.4, 124.7, 122.4, 122.2, 112.7, 104.1, 41.4. HRMS (ESI), m/z calcd. for C₁₅H₁₈N₃O₂ ([M+MeOH+H]⁺) 272.1394, found: 272.1385.

2-(9*H*-carbazol-9-yl)-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2n).

Brown solid (68.6 mg, 95%); mp: 268-270 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.92 (d, J = 6.6 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.34 (s, 1H), 8.31 (t, J = 7.5 Hz, 1H), 8.17 (d, J = 7.8 Hz, 2H), 7.86-7.78 (m, 3H), 7.43 (t, J = 7.5 Hz, 2H), 7.38 (d, J =8.4 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 150.0, 147.8, 146.9, 141.1, 140.9, 134.7, 134.5, 131.5, 131.5, 128.6, 126.2, 123.4, 121.8, 121.7, 120.8, 120.5, 120.3, 112.2, 109.5. HRMS (ESI), m/z calcd. for C₂₅H₂₀N₃O₂ ([M+MeOH+H]⁺) 394.1550, found: 394.1552.

6*H*-benzo[*f*]pyrido[1,2-*c*]quinazolin-6-one (20).

Yellow solid (48.2 mg, 98%); mp: 189-191 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.77 (d, J = 6.6 Hz, 1H), 9.29 (d, J = 8.4 Hz, 1H), 8.81 (t, J = 7.8 Hz, 1H), 8.73 (dd, J = 8.4, 3.3 Hz, 1H), 8.44 (d, J = 9.0 Hz, 1H), 8.22-8.13 (m, 2H), 7.88 (t, J = 7.8 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 8.7 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 147.6, 146.7, 144.8, 140.5, 138.4, 136.1, 131.1, 130.6, 130.5, 128.4, 127.1, 126.7, 125.0, 124.0, 117.4, 107.2. HRMS (ESI), m/z calcd. for C₁₆H₁₁N₂O ([M+H]⁺) 247.0866, found: 247.0868.

8-methyl-6*H*-pyrido[1',2':1,6]pyrimido[5,4-*b*]quinolin-6-one (2p).

Red solid (45.4 mg, 87%); mp: 258-260 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.95 (d, J = 6.0 Hz, 1H), 9.65 (d, J = 7.8 Hz, 1H), 8.51 (t, J = 7.5 Hz, 1H), 8.11 (t, J = 8.7 Hz, 2H), 7.99 (t, J = 6.6 Hz, 1H), 7.66-7.62 (m, 1H), 7.61-7.55 (m, 1H), 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.9, 144.8, 144.3, 141.9, 139.7, 137.7, 135.0, 131.1, 130.9, 130.6, 128.0, 127.9, 124.5, 124.0, 123.3, 12.1. HRMS (ESI), *m/z* calcd. for C₁₇H₁₆N₃O₂ ([M+MeOH+H]⁺) 294.1237, found: 294.1234.

5*H*-pyrido[1,2-*c*]thieno[2,3-*e*]pyrimidin-5-one (2r).

Yellow solid (36.4 mg, 90%); mp: 200-202 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.50 (d, J = 7.2 Hz, 1H), 8.01-7.99 (m, 1H), 7.82 (d, J = 5.4 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.43 (td, J = 6.9, 1.2 Hz, 1H), 7.21 (d, J = 5.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 161.3, 150.1, 144.3, 138.7, 135.8, 133.2, 125.3, 121.4, 118.3, 109.4. HRMS (ESI), m/z calcd. for C₁₀H₇N₂OS ([M+H]⁺) 203.0274, found: 203.0275.

10-methyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2s).

Yellow solid (38.2 mg, 91%); mp: 188-190 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.59 (d, J = 6.6 Hz, 1H), 9.17 (s, 1H), 8.73 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 6.6 Hz, 1H), 7.92 (t, J = 7.5 Hz, 1H), 7.59-7.55 (m, 2H), 2.81 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 162.3, 147.4, 144.2, 137.2, 136.3, 135.7, 126.4, 126.3, 125.3, 122.7, 117.2, 112.8, 22.6. HRMS (ESI), m/z calcd. for C₁₃H₁₁N₂O ([M+H]⁺) 211.0866, found: 211.0866.

11-methyl-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2t).

Yellow solid (39.1 mg, 93%); mp: 170-172 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (d, J = 6.0 Hz, 1H), 8.28 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 7.2 Hz, 1H), 7.66-7.58 (m, 3H), 7.19-7.17 (m, 1H), 3.08 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 150.80, 148.0, 146.9, 144.3, 134.4, 133.7, 133.7, 127.1, 126.7, 121.1, 120.5, 113.5, 25.7. HRMS (ESI), m/z calcd. for C₁₄H₁₅N₂O₂ ([M+MeOH+H]⁺) 243.1128, found: 243.1126.

10-methoxy-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2u).

Yellow solid (42.0 mg, 93%); mp: 238-240 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 9.46 (d, J = 7.2 Hz, 1H), 8.49 (d, J = 8.4 Hz, 1H), 8.25-8.23 (m, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.53-7.51 (m, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.19-7.07 (m, 1H), 4.19 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 169.0, 150.4, 150.3, 146.4, 136.5, 134.5, 125.5, 125.4, 120.9, 112.9, 112.4, 102.6, 58.3. HRMS (ESI), m/z calcd. for C₁₄H₁₅N₂O₃ ([M+MeOH+H]⁺) 259.1077, found: 259.1076.

10-bromo-6*H*-pyrido[1,2-*c*]quinazolin-6-one (2v).

Yellow solid (42.7 mg, 78%); mp: 260-262 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.67 (d, J = 7.2Hz, 1H), 8.72 (s, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.24 (s, 1H). ¹³C NMR (150MHz, CDCl₃) δ 151.6, 148.5, 146.6, 138.0, 135.7, 135.0, 126.9, 124.8, 123.3, 123.3, 122.4, 110.7. HRMS (ESI), *m/z* calcd. for C₁₃H₁₂BrN₂O₂ ([M+MeOH+H]⁺) 307.0077, found: 307.0069.

6*H*-quinolino[1,2-*c*]quinazolin-6-one (2w).

Red solid (43.8 mg, 89%); mp: 162-164 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.46 (d, J = 9.0 Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 153.4, 146.1, 139.6, 137.3, 130.4, 129.8, 129.3, 128.7, 127.4, 126.7, 126.4, 124.8, 122.1, 121.7, 120.8. HRMS (ESI), *m/z* calcd. for C₁₆H₁₁N₂O ([M+H]⁺) 247.0866, found: 247.0858.

5*H*-pyrido[1,2,3-*cd*]perimidin-5-one (2x).

Red solid (40.5 mg, 92%); mp: >300 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.17-10.16 (m, 1H), 9.63 (d, J = 7.6 Hz, 1H), 8.62 (t, J = 7.2 Hz, 1H), 8.50 (q, J =10.7 Hz, 1H), 8.34 (t, J = 7.8 Hz, 1H), 8.27 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 147.6, 144.5, 137.1, 136.8, 135.4, 134.9, 133.3, 130.8, 128.2, 126.1, 123.7, 123.6, 114.4, 108.4. HRMS (ESI), m/z calcd. for C₁₄H₉N₂O ([M+H]⁺) 221.0709, found: 221.0710.

Ja

Yellow solid; mp: > 300 °C; ¹H NMR (400 MHz, DMSO) δ 9.82 (d, J = 6.0 Hz, 1H), 9.34 (d, J = 8.4 Hz, 1H), 8.98 -8.87 (m, 2H), 8.25 (t, J = 6.6 Hz, 1H), 8.08 (t, J = 7.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.4, 147.6, 145.3, 137.9, 137.12, 137.08, 127.0, 125.8, 125.7, 123.0, 116.8, 113.4. ¹⁹F NMR (376 MHz, DMSO) δ -148.3. HRMS (ESI), m/z calcd. for C₁₃H₁₁N₂O ([M]⁺) 211.0866, found: 211.0843.

1-(4-methoxyphenyl)-1*H*-pyrazole (4a).²

The title compound was prepared in 60% as an inseparable mixture. The para:ortho ratio of the inseparable mixture was 6:1 as determined by ¹ H NMR of the isolated product mixture. The NMR and HRMS data of only the major isomer **4a** are given.

Yellow oil (21 mg, 60%); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 2.4 Hz, 1H), 7.69 (s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.44 (s, 1H), 3.85 (s, 3H).

1-(4-phenoxyphenyl)-1*H*-pyrazole (4b).³

Yellow solid (26 mg, 55%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 2.4 Hz, 1H), 7.71 (s, 1H), 7.66-7.62 (m, 2H), 7.38 – 7.33 (m, 2H), 7.15-7.07 (m, 3H), 7.03 (d, J = 7.6 Hz, 2H), 6.46 (t, J = 2.5 Hz, 2H).

1-(4-methoxyphenyl)-1*H*-1,2,3-triazole (4c).³

White solid (25 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s 1H), 7.83 (s, 1H), 7.65-7.61 (m, 2H), 7.05-6.98 (m, 2H), 3.86 (s, 3H).

1-(4-phenoxyphenyl)-1*H*-1,2,3-triazole (4d).

White solid; mp: 91-92 °C ; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.83 (s, 1H), 7.70-7.64 (m, 2H), 7.41-7.35 (m, 2H), 7.20-7.10 (m, 3H), 7.08-7.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 156.3, 134.4, 132.2, 130.1, 124.2, 122.4, 121.9, 119.5, 119.3. HRMS (ESI), *m/z* calcd. for C₁₄H₁₁N₃NaO ([M+Na]⁺) 260.0794, found: 260.0793.

1-([1,1'-biphenyl]-4-yl)-1*H*-1,2,3-triazole (4e).

White solid; mp: 182-184 °C ; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 2.2 Hz, 1H), 7.77 (t, J = 6.5 Hz, 3H), 7.69 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 6.49 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 141.8, 139.6, 136.2, 134.5, 129.0, 128.40 (s), 128.0, 127.1, 121.7, 121.0. HRMS (ESI), m/z calcd. for C₁₄H₁₂N₃ ([M+H]⁺) 222.1026, found: 222.1027.

4-(piperidine-1-carbonyl)benzonitrile (5a). ⁴

Yellow solid (39 mg, 90%); ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 3.70 (s, 2H), 3.27 (s, 2H), 1.68 (s, 4H), 1.51 (s, 2H).

4-(morpholine-4-carbonyl)benzonitrile (5b). 5

Brown solid (38 mg, 89%); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 3.79 (s, 4H), 3.62 (s, 2H), 3.38 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 139.7, 132.5, 127.8, 118.0, 113.8, 66.8, 48.0, 42.7.

4-(pyrrolidine-1-carbonyl)benzonitrile (5c).⁴

Yellow oil (35 mg, 88%); ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 3.65 (t, J = 6.9 Hz, 2H), 3.37 (t, J = 6.6 Hz, 2H), 2.02-1.95 (m, 2H), 1.94-1.88 (m, 2H).

(4-methoxyphenyl)(pyrrolidin-1-yl)methanone (5d).⁴

Yellow oil (36 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.63 (t, J = 6.6 Hz, 2H), 3.48 (t, J = 6.2 Hz, 2H), 1.97-1.85 (m, 4H).

pyrrolidin-1-yl(thiophen-2-yl)methanone (5e).⁴

Yellow oil (30 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 4.4, 1.1 Hz, 1H), 7.46 (d, J = 5.0, 1H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H), 3.81-3.62 (m, 4H), 2.04-1.91 (m, 4H).

pyridin-4-yl(pyrrolidin-1-yl)methanone (5f).⁴

Yellow oil (28 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 6.0 Hz, 2H), 3.65 (t, J = 7.0 Hz, 2H), 3.38 (t, J = 6.6 Hz, 2H), 2.02-1.80 (m, 4H).

(E)-N-benzyl-1-phenylmethanimine (6a).⁶

Orange oil (29 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.81 – 7.76 (m, 2H), 7.44 – 7.42 (m, 2H), 7.35 (d, *J* = 4.5 Hz, 4H), 7.32 (s, 1H), 4.84 (d, *J* = 1.0 Hz, 2H).

(E)-N-(4-methylbenzyl)-1-(p-tolyl)methanimine (6b).⁶

White solid (30 mg, 66%); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.22 (dd, J = 7.8, 2.2 Hz, 4H), 7.15 (d, J = 8.0 Hz, 2H), 4.77 (s, 2H), 2.39 (s, 3H), 2.34 (s, 3H).

(E)-N-(4-methoxybenzyl)-1-(4-methoxyphenyl)methanimine (6c).⁶

Yellow oil (40 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.23 (s, 2H), 6.90 (q, J = 8.8 Hz, 4H), 4.73 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H).

(E)-N-(thiophen-2-ylmethyl)-1-(thiophen-3-yl)methanimine (6d).⁷

Yellow oil (15 mg, 36%); ¹H NMR (600 MHz, CDCl₃) δ 8.42 (s, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.24 (d, J = 4.8 Hz, 1H), 7.08 (t, J = 4.2 Hz, 1H), 7.01-6.95 (m, 2H), 4.95 (s, 2H).

(E)-N-(4-chlorobenzyl)-1-(4-chlorophenyl)methanimine (6e).⁶

White solid (21 mg, 40%); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.77 (s, 2H).

(*E*)-*N*-(4-(trifluoromethyl)benzyl)-1-(4(trifluoromethyl)phenyl)methanimine (6f).⁶

Yellow oil (25 mg, 37%); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 4.90 (s, 2H).

(methylsulfinyl)benzene (7a).⁸

White solid (24 mg, 84%); ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.56-7.48 (m, 3H), 2.73 (s, 3H).

(ethylsulfinyl)benzene (7b).⁸

Colorless oil (25 mg, 80%); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 2H), 7.54-7.47 (m, 3H), 2.93-2.85 (m, 1H), 2.80-2.70 (m, 1H), 1.19 (t, J = 7.5 Hz, 3H).

(cyclopropylsulfinyl)benzene (7c).⁸

Colorless oil (29 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.56-7.48 (m, 3H), 2.29-2.24 m, 1H), 1.29 – 1.22 (m, 1H), 1.07-0.90 (m, 3H).

1-methyl-4-(methylsulfinyl)benzene (7d).⁸

White solid (26 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 2.70 (s, 3H), 2.41 (s, 3H).

1-methoxy-4-(methylsulfinyl)benzene (7e).⁸

White solid (30 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.8 Hz, 2H), 7.1 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.68 (s, 3H).

4-(methylsulfinyl)benzonitrile (7f).⁸

White solid (13 mg, 40%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 2.76 (s, 3H).

II. NMR spectra copies of synthesized compounds

Compound 1a

Compound 1b

Compound 1c

Compound 1d

Compound 1e

Compound 1f

Compound 1g

-45000 --40000 --35000 --30000

Compound 1h

ò

-1.0E+08 -5.0E+07 -0.0E+00

Compound 1i

210

200 190 180 170 160 150 140 130

110 100 f1 (ppm) 90 80 70

60

50

40 30

120

-300

-200

-100

10

Ó

20

Compound 1j

Compound 1k

Compound 11

Compound 1m

Compound 1n

Compound 10

Compound 1p

Compound 1q

100 90 f1 (ppm)

Compound 1s

Compound 1t

Compound 1u

Compound 1v

Compound 1x

Compound 2a

Compound 2b

Compound 2c

Compound 2d

Compound 2e

Compound 2f

))))

Compound 2g

Compound 2h

Compound 2i

Compound 2j

Compound 2k

Compound 21

Compound 2m

Compound 2n

Compound 20

Compound 2p

Compound 2r

Compound 2s

Compound 2t

Compound 2u

Compound 2v

ւս (թրա

Compound 2w

Compound 2x

Compound 3a

Compound 4a

Compound 4b

Compound 4d

Compound 4e

Compound 5a

Compound 5d

Compound 5e

Compound 5f

Compound 6b

Compound 6c

Compound 6d

Compound 6e

Compound 6f

-15000

Compound 7b

Compound 7c

Compound 7d

Compound 7f

III. X-ray single crystal diffraction data of 3a

Figure S1 Crystal structure for 3a

Table 1 Crystal data and st	ructure refinement for 3a.
Identification code	3a
Empirical formula	$C_{13}H_{11}BF_4N_2O$
Formula weight	298.05
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	10.3539(5)
b/Å	10.9951(6)
c/Å	11.0590(7)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1258.98(12)
Z	4
$\rho_{calc}g/cm^3$	1.572
µ/mm ⁻¹	0.140
F(000)	608.0
Crystal size/mm ³	$0.33 \times 0.28 \times 0.24$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/ ^c	6.542 to 50.23
Index ranges	-8 \leq h \leq 12, -13 \leq k \leq 11, -12 \leq l \leq 13
Reflections collected	4515
Independent reflections	1997 [$R_{int} = 0.0202, R_{sigma} = 0.0264$]
Data/restraints/parameters	1997/1/191
Goodness-of-fit on F ²	0.870
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0443, wR_2 = 0.1253$
Final R indexes [all data]	$R_1 = 0.0505, wR_2 = 0.1345$
Largest diff. peak/hole / e Å-3	0.40/-0.27

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters ($Å^2 \times 10^3$) for 3a. U _{eq} is defined as 1/3 of of the trace of
the orthogonalised U _{IJ} tensor.

Atom	x	У	z	U(eq)
F1	2038(3)	5103(3)	2053(3)	76.6(10)
O20	6112(3)	6166(3)	4663(3)	56.4(9)
N7	5059(3)	4567(3)	5571(3)	35.2(7)
N19	4317(3)	6602(3)	5755(3)	38.9(8)
F3	3110(3)	6471(3)	3163(4)	85.7(11)
C18	3324(4)	6210(4)	6517(4)	36.8(9)
F4	3802(3)	4569(4)	3084(5)	100.4(13)
F5	1994(6)	4985(5)	4072(5)	123.0(18)
C13	3198(4)	4975(4)	6792(4)	35.7(9)
C12	4102(3)	4111(4)	6276(4)	34.8(8)
C14	2177(4)	4591(4)	7532(4)	43.1(10)
C17	2462(4)	7048(4)	7025(4)	44.5(10)
C6	5221(4)	5848(4)	5281(4)	39.7(9)
C15	1320(4)	5425(4)	7990(5)	49.8(11)
C10	4914(4)	2099(4)	5898(5)	50.9(12)
C16	1498(4)	6642(5)	7750(4)	51.4(12)
C8	5937(4)	3808(4)	5021(5)	46.5(11)
C21	4367(4)	7880(4)	5353(5)	51.3(12)
C11	4043(4)	2868(4)	6457(4)	45.2(10)
C9	5869(4)	2591(4)	5173(5)	49.6(11)
B2	2713(5)	5285(5)	3096(5)	46.8(12)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 3a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	98(2)	59.1(19)	72(2)	-5.8(16)	-42.1(19)	0.5(16)
O20	50.8(17)	52.1(18)	66(2)	5.3(17)	16.9(17)	-8.8(14)
N7	35.6(15)	35.0(17)	35.0(18)	-0.9(14)	-2.2(14)	0.8(13)
N19	42.8(16)	32.7(17)	41(2)	4.1(14)	0.8(15)	0.8(13)
F3	114(2)	46.1(16)	97(3)	5.7(16)	-40(2)	-18.3(17)
C18	35.3(18)	42(2)	33(2)	1.7(17)	-4.6(17)	-0.5(15)
F4	88(2)	77(2)	137(4)	-7(2)	-42(3)	18.7(17)
F5	142(4)	149(4)	78(3)	13(3)	27(3)	-49(3)
C13	35.3(19)	42(2)	30(2)	-0.8(16)	-5.1(16)	1.2(15)

C12	34.5(18)	40(2)	30(2)	3.1(16)	-6.4(16)	-3.3(15)
C14	43(2)	49(2)	37(2)	3.8(18)	-0.4(18)	-6.0(18)
C17	51(2)	42(2)	41(2)	2.7(19)	-2(2)	7.7(18)
C6	39(2)	37(2)	42(2)	1.5(18)	-3.0(19)	-6.0(16)
C15	43(2)	60(3)	46(3)	5(2)	5(2)	1.9(18)
C10	55(2)	40(2)	58(3)	2(2)	-7(2)	4.1(18)
C16	46(2)	64(3)	44(3)	0(2)	0(2)	13(2)
C8	39(2)	49(2)	51(3)	-7(2)	4(2)	4.0(18)
C21	61(3)	34(2)	59(3)	8(2)	3(2)	-5.4(18)
C11	47(2)	39(2)	50(3)	7(2)	-3(2)	-0.8(17)
C9	47(2)	48(3)	54(3)	-9(2)	-4(2)	10.6(18)
B2	53(3)	41(3)	47(3)	9(2)	-10(3)	-6(2)

Table 4 Bond Lengths for 3a.

F1 B2 1.364(6) F4 B2 1.3	
	75(6)
O20 C6 1.202(5) F5 B2 1.33	52(7)
N7 C12 1.357(5) C13 C12 1.43	50(5)
N7 C6 1.454(5) C13 C14 1.40	02(6)
N7 C8 1.375(5) C12 C11 1.33	83(6)
N19 C18 1.397(5) C14 C15 1.3'	72(6)
N19 C6 1.356(5) C17 C16 1.33	56(6)
N19 C21 1.475(5) C15 C16 1.3'	76(7)
F3 B2 1.369(6) C10 C11 1.38	83(7)
C18 C13 1.397(5) C10 C9 1.38	83(7)
C18 C17 1.401(6) C8 C9 1.33	51(6)

Table 5 Bond Angles for 3a.

Atom	Aton	1 Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
C12	N7	C6	124.6(3)	C16	C17	C18	119.3(4)
C12	N7	C8	120.9(3)	O20	C6	N7	119.8(4)
C8	N7	C6	114.4(3)	O20	C6	N19	124.9(4)
C18	N19	C21	120.1(3)	N19	C6	N7	115.3(3)
C6	N19	C18	123.5(3)	C14	C15	C16	119.5(4)
C6	N19	C21	116.2(3)	C11	C10	C9	119.1(4)
N19	C18	C17	120.5(4)	C17	C16	C15	122.2(4)
C13	C18	N19	120.0(3)	C9	C8	N7	120.7(4)
C13	C18	C17	119.5(4)	C12	C11	C10	120.8(4)
C18	C13	C12	119.4(4)	C8	C9	C10	119.8(4)
C18	C13	C14	119.3(4)	F1	B2	F3	109.8(4)
C14	C13	C12	121.3(4)	F1	B2	F4	109.1(5)

N7	C12	C13	117.1(3)	F3	B2	F4	107.5(4)
N7	C12	C11	118.7(4)	F5	B2	F1	110.9(4)
C11	C12	C13	124.2(4)	F5	B2	F3	110.8(5)
C15	C14	C13	120.1(4)	F5	B2	F4	108.6(5)

Table 6 Torsion Angles for 3a.

Α	B	С	D	A	ngle/°	Α	В	С	D	Angle/°
N7	C12	C11	C10	1	-2.1(6)	C14	C13	C12	C11	0.2(6)
N7	C8	C9	C10	1	-0.6(7)	C14	C15	C16	5C17	3.1(7)
N19	C18	C13	C12		-0.2(6)	C17	C18	C13	C12	-179.2(4)
N19	C18	C13	C14		-178.3(4)	C17	C18	C13	C14	2.6(6)
N19	C18	C17	C16		179.2(4)	C6	N7	C12	2C13	-1.3(5)
C18	N19	C6	020		-177.0(4)	C6	N7	C12	C11	178.5(4)
C18	N19	C6	N7		2.9(6)	C6	N7	C8	C9	-177.5(4)
C18	C13	C12	N7		1.9(5)	C6	N19	C18	C13	-2.3(6)
C18	C13	C12	C11		-177.9(4)	C6	N19	C18	C17	176.7(4)
C18	C13	C14	C15		-0.7(6)	C8	N7	C12	2C13	-178.3(4)
C18	C17	C16	C15		-1.2(7)	C8	N7	C12	C11	1.5(6)
C13	C18	C17	C16		-1.7(6)	C8	N7	C6	O20	-4.0(6)
C13	C12	C11	C10		177.7(4)	C8	N7	C6	N19	176.1(4)
C13	C14	C15	C16		-2.2(7)	C21	N19	C18	C13	173.1(4)
C12	N7	C6	020		178.8(4)	C21	N19	C18	C17	-7.9(6)
C12	N7	C6	N19)	-1.1(6)	C21	N19	C6	O20	7.4(6)
C12	N7	C8	C9		-0.2(6)	C21	N19	C6	N7	-172.7(3)
C12	C13	C14	C15		-178.8(4)	C11	C10	C9	C8	0.0(7)
C14	C13	C12	N7		180.0(4)	C9	C10	C11	C12	1.3(7)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3a.

x	У	z	U(eq)
2079.74	3770.27	7712.87	52
2549.78	7874.26	6866.88	53
625.33	5169.82	8458.86	60
4859.84	1261.68	6009.52	61
938.05	7204.06	8096.59	62
6584.46	4137.35	4538.51	56
3541.93	8111.29	5029.25	77
5016.11	7967.63	4739.21	77
4574.5	8393.45	6027.34	77
3409.19	2546.16	6959.16	54
6462.22	2084.99	4790.67	60
	x 2079.74 2549.78 625.33 4859.84 938.05 6584.46 3541.93 5016.11 4574.5 3409.19 6462.22	x y 2079.74 3770.27 2549.78 7874.26 625.33 5169.82 4859.84 1261.68 938.05 7204.06 6584.46 4137.35 3541.93 8111.29 5016.11 7967.63 4574.5 8393.45 3409.19 2546.16 6462.22 2084.99	x y z 2079.743770.277712.872549.787874.266866.88625.335169.828458.864859.841261.686009.52938.057204.068096.596584.464137.354538.513541.938111.295029.255016.117967.634739.214574.58393.456027.343409.192546.166959.166462.222084.994790.67

IV Photophysical and Redox Properties of 2a and 3a

All photophysical and redox properties of **2a** and **3a** were tested following the procedure described in literature.⁹

Figure S2 Absorption spectrum for 2a and 3a

Figure S3 Excitation and emission spectrum for 2a and 3a

Figure S4 Cyclic voltammogram for 2a

Figure S4 Cyclic voltammogram for 3a

Figure S5 Fluorescence lifetime for 2a

Figure S6 Fluorescence lifetime for 3a

Figure S7 Excitation and emission spectrum for 2

V. References

(1) (a) C. Liu, N. Han, X. Song, J. Qiu, *Eur. J. Org. Chem.* 2010, 5548. (b) C. Qi, X. Hu,
H. Jiang, *Chem. Commun.* 2017, *53*, 7994. (c) M. Chaitanya, D. Yadagiri, P. Anbarasan, *Org. Lett.* 2013, *15*, 4960.

(2) Somnath D., Palani N., Burkhard K., Chem. Eur. J. 2017, 23, 18161.

(3) Nathan A. Romero, Kaila A. Margrey, Nicholas E. Tay, David A. Nicewicz. *Science* **2015**, *349*, 1326.

(4) Xiaofei W., Shusheng Y., Chao W., Dong X., Jianliang X. Org. Biomol. Chem. 2016, 14, 7028.

(5) Tuan T. Dang, Yinghuai Zhu, Joyce S. Y. Ngiam, Subhash C. Ghosh, Anqi Chen, Abdul M. Seayad. *ACS Catal.* **2013**, *3*, 1406.

(6) Qi X., Timothy U. Connell, Jasper J. Cadusch, Ann Roberts, Anthony S. R. Chesman, Daniel E. Gómez. *ACS Catal.* **2018**, *8*, 10331.

(7) Fabrizio B., Ahmad T., Ahmad C., Robert M. Eur. J. Org. Chem. 2019, 14, 7164.

(8) Cong Y., Yanbin Z., Aishun D., Yong H., Hao G. Scientific Reports 2018, 8, 2205.

(9) Amruta Joshi-Pangu, François Lévesque, Hudson G. Roth, Steven F. Oliver, Louis-Charles Campeau, David Nicewicz, Daniel A. DiRocco. J. Org. Chem. **2016**, *81*, 7244–7249.