Supporting information

Biomass- and calcium carbide-based recyclable polymers

Svetlana A. Metlyaeva, Konstantin S. Rodygin, Kristina A. Lotsman, Dmitriy E. Samoylenko and Valentine P. Ananikov

Saint Peterburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia. E-mail: k.rodygin@spbu.ru

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia. E-mail: val@ioc.ac.ru
Contents

S1. Spectral data and characterization ... 3
S2. NMR spectra of the vinyl ethers .. 5
S3. NMR spectra of the polymers .. 12
S4. Characterization of the polymers ... 16
S5. Pyrolysis data ... 19
S6. Plausible transformations during the pyrolysis ... 20
S7. General procedure for the pyrolysis in a quartz tube at 750 °C 23
S8. NMR spectra of the pyrolysis products (from traps and washed from tubes) 24
S9. NMR spectra of the mixtures after the reduction .. 27
S10. NMR spectra of the pyrolysis products in a quartz tube 28
S1. Spectral data and characterization

Menthyll vinyl ether (1a)

1H NMR (400 MHz, CDCl$_3$) δ 6.32 (dd, $J = 14.1$, 6.5 Hz, 1H), 4.28 (dd, $J = 14.1$, 1.3 Hz, 1H), 3.94 (dd, $J = 6.5$, 1.3 Hz, 1H), 3.52 (td, $J = 10.7$, 4.3 Hz, 1H), 2.16 – 2.01 (m, 2H), 1.75 – 1.55 (m, 2H), 1.48 – 1.29 (m, 2H), 1.08 – 0.95 (m, 2H), 0.95 – 0.83 (m, 7H), 0.78 (d, $J = 7.0$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 151.5, 87.7, 80.0, 47.9, 41.0, 34.6, 31.6, 26.0, 23.7, 22.3, 20.9, 16.5.

Bornyl vinyl ether (2a)

1H NMR (400 MHz, CDCl$_3$) δ 6.40 (dd, $J = 14.3$, 6.7 Hz, 1H), 4.12 (dd, $J = 14.3$, 1.3 Hz, 1H), 4.01 (dt, $J = 9.4$, 2.4 Hz, 1H), 3.94 (dd, $J = 6.7$, 1.3 Hz, 1H), 2.22 (m, 1H), 2.00 (m, 1H), 1.78 – 1.70 (m, 1H), 1.70 – 1.64 (m, 1H), 1.33 – 1.16 (m, 2H), 1.07 (dd, $J = 13.4$, 3.3 Hz, 1H), 0.94 – 0.82 (m, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 152.0, 87.1, 84.0, 49.3, 47.9, 45.2, 36.5, 28.1, 26.9, 19.9, 19.0, 13.8.

Fenchyl vinyl ether (3a)

1H NMR (400 MHz, CDCl$_3$) δ 6.32 (dd, $J = 14.1$, 6.5 Hz, 1H), 4.26 (dd, $J = 14.1$, 1.3 Hz, 1H), 3.90 (dd, $J = 6.5$, 1.3 Hz, 1H), 3.36 (d, $J = 1.5$ Hz, 1H), 1.84 – 1.64 (m, 3H), 1.54 – 1.47 (m, 1H), 1.47 – 1.36 (m, 1H), 1.14 (dd, $J = 10.2$, 1.2 Hz, 1H), 1.09 (s, 3H), 1.06 (s, 3H), 1.04 – 0.98 (m, 1H), 0.88 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 153.5, 92.7, 87.3, 49.2, 48.8, 41.5, 40.1, 31.0, 26.3, 26.1, 20.5, 19.8.

Citronellyl vinyl ether (4a)

1H NMR (400 MHz, CDCl$_3$) δ 6.46 (dd, $J = 14.3$, 6.8 Hz, 1H), 5.18 – 5.02 (m, 1H), 4.17 (dd, $J = 14.3$, 1.8 Hz, 1H), 3.97 (dd, $J = 6.8$, 1.8 Hz, 1H), 3.77 – 3.64 (m, 2H), 2.12 – 1.87 (m, 2H), 1.77 – 1.66 (m, 4H), 1.65 – 1.53 (m, 4H), 1.53 – 1.41 (m, 1H), 1.40 – 1.30 (m, 1H), 1.24 – 1.13 (m, 1H), 0.92 (dd, $J = 6.6$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 152.1, 131.4, 124.8, 86.3, 66.5, 37.3, 36.1, 29.7, 25.9, 25.6, 19.6, 17.8. HRMS (m/z): [M]$^+$ calcd. for C$_{12}$H$_{23}$OAg, 289.0716; found 289.0714.

Javanyl vinyl ether (5a), as a mixture of two isomers

1H NMR (400 MHz, CDCl$_3$) δ 6.56 – 6.45 (m, 2H), 4.19 – 4.09 (m, 2H), 3.96 – 3.93 (m, 2H), 3.45 – 3.30 (m, 4H), 1.95 – 1.80 (m, 2H), 1.48 – 1.30 (m, 3H), 1.26 – 1.15 (m, 4H), 1.15 – 1.11 (m, 6H), 1.04 (s, 7H), 1.02 – 0.97 (m, 3H), 0.89 (s, 6H), 0.80 – 0.75 (m, 6H), 0.65 – 0.524 (m, 4H), 0.52 – 0.46 (m, 2H), 0.08 – 0.01 (m, 3H), -0.01 – -0.06 (m, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 152.3, 86.1, 86.0, 77.7, 77.5, 45.1, 44.8, 41.4, 41.2, 32.5, 32.4, 31.4, 31.3, 29.6, 28.9, 22.9, 22.7, 22.6, 21.7, 21.3, 20.0, 19.8, 19.6, 19.0, 17.4, 17.4, 17.3, 16.8, 16.1, 15.5, 14.0, 13.9. HRMS (m/z): [M]$^+$ calcd. for C$_{17}$H$_{28}$OAg, 355.1186; found 355.1194.

Myrtanyl vinyl ether (6a)

1H NMR (400 MHz, CDCl$_3$) δ 6.46 (dd, $J = 14.3$, 6.8 Hz, 1H), 4.15 (dd, $J = 14.3$, 1.7 Hz, 1H), 3.95 (dd, $J = 6.8$, 1.8 Hz, 1H), 3.66 – 3.58 (m, 2H), 2.50 – 2.30 (m, 2H), 2.05 – 1.81 (m, 5H),
1.56 – 1.37 (m, 1H), 1.20 (s, 3H), 0.99 (s, 3H), 0.95 (d, J = 9.6 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 152.3, 86.2, 73.1, 43.4, 41.5, 40.9, 38.7, 33.2, 28.1, 26.1, 23.5, 19.0. HRMS (m/z): [M]$^+$ calcd. for C$_{12}$H$_{20}$OAg, 287.0560; found 287.0571.

Vinyl ether of rosaphen (7a)

1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.24 (m, 2H), 7.24 – 7.15 (m, 3H), 6.48 (dd, J = 14.3, 6.8 Hz, 1H), 4.17 (dd, J = 14.3, 1.7 Hz, 1H), 3.97 (dd, J = 6.8, 1.7 Hz, 1H), 3.55 (dd, J = 9.5, 6.0 Hz, 1H), 3.47 (dd, J = 9.5, 6.6 Hz, 1H), 2.69 – 2.53 (m, 2H), 1.91 – 1.79 (m, 1H), 1.77 – 1.57 (m, 2H), 1.57 – 1.43 (m, 1H), 1.31 – 1.15 (m, 1H), 0.96 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 152.3, 142.7, 128.5, 128.4, 125.8, 86.2, 73.4, 36.3, 33.3, 33.1, 29.0, 17.1. HRMS (m/z): [M]$^+$ calcd. for C$_{14}$H$_{20}$OAg, 311.0565; found, 311.0556.
S2. NMR spectra of the vinyl ethers

Figure S1. 1H NMR (400 MHz, CDCl$_3$) spectrum of menthyl vinyl ether (1a)

Figure S2. 13C NMR (101 MHz, CDCl$_3$) spectrum of menthyl vinyl ether (1a)
Figure S3. 1H NMR (400 MHz, CDCl$_3$) spectrum of bornyl vinyl ether (2a)

Figure S4. 13C NMR (101 MHz, CDCl$_3$) spectrum of bornyl vinyl ether (2a)
Figure S5. 1H NMR (400 MHz, CDCl$_3$) spectrum of fenchyl vinyl ether (3a)

Figure S6. 13C NMR (101 MHz, CDCl$_3$) spectrum of fenchyl vinyl ether (3a)
Figure S7. 1H NMR (400 MHz, CDCl$_3$) spectrum of citronellyl vinyl ether (4a)

Figure S8. 13C NMR (101 MHz, CDCl$_3$) spectrum of citronellyl vinyl ether (4a)
Figure S9. 1H NMR (400 MHz, CDCl$_3$) spectrum of javanyl vinyl ether (5a)

Figure S10. 13C NMR (101 MHz, CDCl$_3$) spectrum of javanyl vinyl ether (5a)
Figure S11. 1H NMR (400 MHz, CDCl$_3$) spectrum of myrtanyl vinyl ether (6a)

Figure S12. 13C NMR (101 MHz, CDCl$_3$) spectrum of myrtanyl vinyl ether (6a)
Figure S13. 1H NMR (400 MHz, CDCl$_3$) spectrum of vinyl ether of rosaphen (7a)

Figure S14. 13C NMR (101 MHz, CDCl$_3$) spectrum of vinyl ether of rosaphen (7a)
S3. NMR spectra of the polymers

Figure S15. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl menthol (P1)

Figure S16. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl borneol (P2)
Figure S17. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl fenchol (P3)

Figure S18. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl citronellol (P4)
Figure S19. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl javanol (P5)

Figure S20. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl myrtanol (P6)
Figure S21. 1H NMR (400 MHz, CDCl$_3$) spectrum of polyvinyl rosaphen (P7)
S4. Characterization of the polymers

Table S1: Masses and polydispersity indexes of the polymers

<table>
<thead>
<tr>
<th>№</th>
<th>Polymer</th>
<th>Mn (g/mol)</th>
<th>Mw (g/mol)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Polyvinyl menthol</td>
<td>5.04×10^4</td>
<td>8.50×10^4</td>
<td>1.69</td>
</tr>
<tr>
<td>P2</td>
<td>Polyvinyl borneol</td>
<td>5.54×10^4</td>
<td>7.08×10^4</td>
<td>1.28</td>
</tr>
<tr>
<td>P3</td>
<td>Polyvinyl fenchol</td>
<td>1.29×10^4</td>
<td>2.57×10^4</td>
<td>1.98</td>
</tr>
<tr>
<td>P4</td>
<td>Polyvinyl citronellol</td>
<td>3.35×10^4</td>
<td>5.38×10^4</td>
<td>1.61</td>
</tr>
<tr>
<td>P5</td>
<td>Polyvinyl javanol</td>
<td>6.2×10^3</td>
<td>1.12×10^4</td>
<td>1.82</td>
</tr>
<tr>
<td>P6</td>
<td>Polyvinyl myrtanol</td>
<td>2.1×10^4</td>
<td>4.3×10^4</td>
<td>2.02</td>
</tr>
<tr>
<td>P7</td>
<td>Polyvinyl rosaphen</td>
<td>5.01×10^4</td>
<td>6.28×10^3</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Figure S22. GPC chromatogram of polyvinyl menthol (P1)

Figure S23. GPC chromatogram of polyvinyl borneol (P2)
Figure S24. GPC chromatogram of polyvinyl fenchol (P3)

Figure S25. GPC chromatogram of polyvinyl citronellol (P4)

Figure S26. GPC chromatogram of polyvinyl javanol (P5)
Figure S27. GPC chromatogram of polyvinyl myrtanol (P6)

Figure S28. GPC chromatogram of polyvinyl rosaphen (P7)
S5. Pyrolysis data

Table S2: The content of an initial alcohol in a mixture after the pyrolysis (mass%)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Alcohol</th>
<th>200 °C</th>
<th>250 °C</th>
<th>300 °C</th>
<th>350 °C</th>
<th>400 °C</th>
<th>450 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>menthol (1)</td>
<td>100</td>
<td>34</td>
<td>73</td>
<td>87</td>
<td>73</td>
<td>57</td>
</tr>
<tr>
<td>P2</td>
<td>borneol (2)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>P3</td>
<td>fenchol (3)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>5</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>P4</td>
<td>citronellol (4)</td>
<td>-</td>
<td>-</td>
<td>76</td>
<td>66</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>P5</td>
<td>javanol (5)</td>
<td>-</td>
<td>-</td>
<td>86</td>
<td>59</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>P6</td>
<td>myrtanol (6)</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>67</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td>P7</td>
<td>rosaphen (7)</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td>48</td>
<td>48</td>
<td>37</td>
</tr>
</tbody>
</table>

Table S3: The composition of the aldehyde/ketone mixtures after the pyrolysis (mass%)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Aldehyde/ketone</th>
<th>200 °C</th>
<th>250 °C</th>
<th>300 °C</th>
<th>350 °C</th>
<th>400 °C</th>
<th>450 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>P2</td>
<td>2c</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>21</td>
<td>47</td>
<td>59</td>
</tr>
<tr>
<td>P3</td>
<td>3c</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>1</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>P4</td>
<td>4b</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>27</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>P5</td>
<td>5b</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>P6</td>
<td>6b</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>21</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>P7</td>
<td>7b</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>37</td>
<td>35</td>
<td>39</td>
</tr>
</tbody>
</table>

Table S4: The main by-products after polymer pyrolysis (mass%)

<table>
<thead>
<tr>
<th>By-product</th>
<th>Polymer</th>
<th>200 °C</th>
<th>250 °C</th>
<th>300 °C</th>
<th>350 °C</th>
<th>400 °C</th>
<th>450 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>squalene</td>
<td>P1</td>
<td>0</td>
<td>58</td>
<td>26</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>toluene</td>
<td>P2</td>
<td>-</td>
<td>-</td>
<td>84</td>
<td>62</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>acetaldehyde</td>
<td>P3</td>
<td>-</td>
<td>-</td>
<td>74</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>squalene</td>
<td>P4</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>80</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>squalene</td>
<td>P6</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>toluene</td>
<td>P7</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
S6. Plausible transformations during the pyrolysis

Scheme S1. Plausible routes of polyvinyl menthol (P1) decomposition

Scheme S2. Plausible routes of polyvinyl borneol (P2) decomposition

Scheme S3. Plausible routes of polyvinyl fenchol (P3) decomposition
Scheme S4. Plausible routes of polyvinyl citronellol (P4) decomposition

Scheme S5. Plausible routes of polyvinyl javanol (P5) decomposition
Scheme S6. Plausible routes of polyvinyl myrtanol (P6) decomposition

Scheme S7. Plausible routes of polyvinyl rosaphen (P7) decomposition
S7. General procedure for the pyrolysis in a quartz tube at 750 °C

All the procedures were performed under argon atmosphere. The furnace was preheated to 750 °C, then, a polymer sample was placed in a part of the tube, and the tube was placed in the furnace (in the case of polyvinyl bornyl and myrtanyl substrates: first, a place of a tube was preheated, which does not contain a sample, and then shifted the tube further and heated the part with a sample).

Polyvinyl menthol (1b): loading 25 mg, rapid heating to 415 °C, then heating to 650 °C for 5 minutes, then 5 min to 720 °C, then a very slow increase of temperature. A yellow liquid appeared on the walls of the extended part of the tube. After 30 min of the pyrolysis, the tube was removed and cooled. There was no residue in the part of the tube that originally contained the sample. The liquid part was washed off with methylene chloride, the solvent was evaporated, and samples were taken for NMR and chromatography (in ethyl acetate).

Polyvinyl borneol (2b) and polyvinyl myrtanol (6b): loading 20 mg, rapid heating to 745 °C, then very slow increase of temperature. A yellow liquid appeared on the walls of the extended part of the tube. After 30 min of pyrolysis, the tube was removed and cooled. There was no residue in the part of the tube that originally contained the sample. The liquid part was washed off with methylene chloride, the solvent was evaporated and samples were taken for NMR and chromatography (in ethyl acetate (polyvinyl borneol) and methylene chloride (polyvinyl myrtanol) due to low solubility in EA. 150 mg of polyvinyl borneol (2b) were disassembled in a quartz tube in the same manner at 400 °C bubbling the gas phase through chloroform-d and toluene-d₆.
S8. NMR spectra of the pyrolysis products (from traps and washed from tubes)

Figure S31. 1H NMR (400 MHz, CDCl$_3$) spectrum of the gaseous pyrolysis products of polyvinyl borenol (P2) from chloroform trap

Figure S32. 13C NMR (101 MHz, CDCl$_3$) spectrum of the gaseous products of polyvinyl borneol (P2) pyrolysis from chloroform trap
Figure S33. 1H NMR (400 MHz, C_6D_6) spectrum of the gaseous products of polyvinyl borneol (P2) pyrolysis from benzene trap.

Figure S34. 1H NMR (400 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis washed out from the system with methylene chloride.
Figure S35. 13C NMR (101 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis washed out from the system with methylene chloride.
S9. NMR spectra of the mixtures after the reduction

Figure S36. 1H NMR (400 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis after the reduction with NaBH$_4$

Figure S37. 13C NMR (101 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis after the reduction with NaBH$_4$
S10. NMR spectra of the pyrolysis products in a quartz tube

Figure S38. 1H NMR (400 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl menthol (P1) pyrolysis in a quartz tube

Figure S39. 13C NMR (101 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl menthol (P1) pyrolysis in a quartz tube
Figure S40. 1H NMR (400 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis in a quartz tube.

Figure S41. 13C NMR (101 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl borneol (P2) pyrolysis in a quartz tube.
Figure S42. 1H NMR (400 MHz, CDCl$_3$) spectrum of the liquid products of polyvinyl myrtanol (P6) pyrolysis in a quartz tube.