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S.1 Detailed description of the computational model 

S.1.1. Governing equations. We here solve the evolution of a single RBC suspended in an 
incompressible fluid. The conservation of momentum and the continuity is satisfied in both the 
fluid and membrane sub-domains using the following governing equations: 

   

� ���� = � ⋅ �	 � ∈ 	,� ���� = � ⋅ �� � ∈ �,� ⋅ � = 0  ∈ .       (S1) 

Here,  is the total domain which can be broken into two sub-domains corresponding to the 

volume of the fluid and an infinitely thin suspended RBC membrane 	 and �, respectively. 

The stress in the membrane and fluid domains are denoted by �� and �	, respectively. The stress 
balance is satisfied at the boundary of contact between the membrane and the liquid, ��� − �	� ⋅ � = 0 � ∈ �,     (S2) 

where, � is an outwardly-pointing unit normal vector. The suspending fluid is Newtonian and 
therefore, �	 = �� = −�� + � ����� + ����T�.     (S3) 

with, � being the hydrodynamic pressure and � being the Newtonian fluid viscosity. The RBC will 
be modeled as a 2D hyper-elastic membrane. The stress in the membrane is calculated using the 
first Piola-Kirchhoff tension,1 which is related to the second Piola-Kirchhoff tension, �� = 2 �!"�#� = 2 $�!"�%&'" � + ()#�*+ �!"�%,'"-.     (S4) 

In this equation, �� is related to the strain energy areal density ."  using the principle of virtual work. 
The energy density is a function of the two independent invariants of the right Cauchy-Green 

tensor #� = /�0/�, i.e., 1+23  and 1)23 . (Note the caret is used to distinguish 2D tensions the 3D stress 
counterparts.) The Skalak model 2 is used for the energy areal density of RBC membrane: ." = 45) 6+) 1+) + 1+ − 1)7 + 489 1)).     (S5) 

where 1+ = 1+23 − 2 and 1) = 1)23 − 1 are the two invariants of the Skalak model. The membrane of 
the RBC is known to be locally area-incompressible, and this is incorporated in the Skalak model 
by using a sufficiently larger area dilutional modulus ;< relative to the shear modulus, ;=.2–5 

 

By assuming RBC as an infinitely thin sack of fluid, we have neglected the out of plane 
forces in the membrane. Therefore, we need to include an additional energy density function for 
bending into our RBC model: ."> = ?@) �2AB + CD�),     (S6) 

where, E> is the bending modulus, CD is the spontaneous curvature of the membrane, and AB is the 
mean curvature of the membrane. We utilized an immersed-finite-element method (IFEM) to solve 
the governing equations and simulate the dynamics of coupled fluid-solid problem. The cells start 
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from an unstressed biconcave shape which also defines the spontaneous shape for bending 
calculations.4,6,7 We don’t expect the stress-free condition to affect our final results since 1) we use 
physiological value for the viscosity ratio of cytoplasm to the exterior environment, where the 
biconcave and a nearly spherical stress-free states found to not show any significant difference.8,9 
More details about our method can be found in our publication.1 

 

In this study, we seek to solve the flow field in a constriction geometry with the geometrical 
details that are depicted in Fig. S1. 

 

 

Fig. S1. (A) Schematic representation of the constriction area in the microfluidic platform and the 
corresponding geometrical parameters. (B)-(D) Computational domain associated with flow 
simulations behind the surface plot of Fig. 5. Panels (B) and (D) are the simulation domains that 
are used for evaluating the impact of the initial condition and studying the relaxation dynamics, 
respectively. Panel (C) shows the simulation domain for finding the steady-state values of Ta.  
Shown in B and D are axial velocity contours (normalized by bulk velocity in the channel) and 
instantaneous RBC shapes. 

 

S.1.2 Meshing details: Mesh convergence tests for our numerical method have been extensively 
performed for our previous publications.1 Here, we use a 4 times greater refined mesh for both 
RBCs and also the main domain, i.e., 10,242 mesh nodes for each membrane, about 40 Eulerian 
mesh points across the cell, which leaves us about 10 mesh points across each small clearance 
“film” between the cells and the wall. 

 

To obtain the important dimensionless parameters that determine the physics of this 
problem, we nondimensionalized the governing equations. The height of the channel H is 
considered as the characteristic length, and the unperturbed average velocity of the fluid  F as the 
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characteristic velocity. As a result, F G⁄  is the characteristic time, � F G⁄   is the characteristic 
stress in the fluid, and ;= G⁄   is the characteristic stress in the membrane. This gives us the 
following non-dimensional equations to solve (non-dimensional variables and operators are 
indicated with a star): 

Re
��∗��∗ = �∗ ⋅ �	∗ = −�∗�∗ + �∗ ⋅ Λ�∗�∗ L ∈ M,

Re
��∗��∗ = +

Ca
�∗ ⋅ �N∗ L ∈ N,�∗ ⋅ �∗ = 0 L ∈ .   (S7) 

Here O is used to account for variable viscosity inside the cytoplasm (within the membrane) �PQRR. 
It is defined based on an indicator function S which has a value of unity inside the RBC membrane 
and zero outside and S smoothly varies across the boundary.1,10,11 In particular, O = 1 + �T − 1�S, 

with T = UVWXXU . It is known that the physiological value of the viscosity ratio is significantly greater 

than unity, in particular, we chose T = 5. Additionally, non-dimensional relationships for the 
energy areal density for the Skalak model and also the bending energy as follows: ." ∗ = +) 6+) 1+) + 1+ − 1)7 + 4894Z 1)),.">∗ = [\@) �2AB∗ + CD∗�).    (S8) 

 

Overall, 5 dimensionless parameters appear in the governing equations, namely, the 
Reynolds number (]^ = �FG/�), the cytoplasmic viscosity ratio (T = �PQRR �⁄ ), the capillary 

number (`a = �F/;=), ;</;=, and A> = b@B45. The value of A> = 0.0033 was chosen in our 

simulations according to the commonly reported elastic moduli4,12 and the dimension of our 
channel, i.e., E>~10 × 10*+f N. m and the shear modulus 7 × 10*j N *+. 

 

The literature about the importance of the viscosity of the membrane is controversial. 
While many researchers neglect the viscosity ratio based on the scaling analysis,12 some others 
include it in the simulations13,14 in the context of a model which contains several other adjusting 
parameters.  

 

Kelvin-Voigt formula14 is sometimes used to model the continuum level description of the 
membrane viscosity as: 

    k= = 45) �^) − ^)� + 2�� � lm Q��  ,    (S9) 

where k= is the maximum shear tension, ^ is the extension ratio and �� is the membrane viscosity. 
The exact range of the viscosity ratio depends on the measurement approach, but more recent 
diffusion experiments15 reported the upper bound of �� as 5 × 10*n ;N. s/m, taking this value, 

the dissipation across the length of the cell is small, as the Boussinesq number (pq = UrUVWXXs) is 

lower than unity.  
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S.1.3 Derivation of the Taylor deformation. We seek to find the three terms of the moment of 
area tensor (or the second moment) of the cell image projected into the xy-plane, tu, tv , awx tuv 

following a similar approach described in Chaudhuri and Samanta.16 Cell region is denoted by .The overall number of points that is used is N. 

Center of mass coordinates are calculated as, LPy� = ∑ {|∈}� ; ~Py� = ∑ �|∈}� . The three main 

components of the moment of area tensor are, 

 tu = tD = ∑ �� − �Py��)�∈� ,     (S10) tv = t�, = ∑ �� − �Py��)�∈� ,     (S11) tuv = ∑ �� − �Py���� − �Py���∈� .     (S12) 

 

The orientation of the object can be determined by minimizing the moment of area around 
an axis which makes an angle � with the L axis. The resulting angle can be shown to have the form 
of Equation (S12). The moment of area at that angle can be obtained based on the relationship 
between the coordinate values in the rotated frame: 

 � = +) tan*+� )�����*���,       (S13) 

tu� = t� = tu ∗ cos) � − 2tuv sin � cos � + tv sin) �.  (S14) 

 

Finally, we find the minor and major axes (2� and 2a, respectively) of an equivalent 
ellipse which has the same moment of area as the object. Since the moment of area of an ellipse is tv,QRR = +� �an� = +� �a) and noting that tv� = t���/), we can write 

 

a = 2���,WXX%���  =2����� ,      (S15) 

� = 2���,WXX%��� = 2�����  .     (S16) 

Taylor deformation is then defined as: ka = �a − ��/�a + �� and is shown in Fig. 2A. Other 
approaches such as finding the eigen values of the correlation matrix17 result in the same value of 
Ta. 

 

S.2 Shear modulus sensitivity versus other shape parameters 

S.2.1 Circularity. Here, we show the circularity (also called “form factor”)18 parameter, denoted 
by C, which is determined based on the projected area and perimeter of the cell.19 The results of C 
as a function of Ca clearly demonstrates that the Ta has higher sensitivity to Ca. In particular, the 
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steady-state values of Ca 0.3 and 0.4 are not distinguishable.  

             

Fig. S2. (A) Definition of circularity based on the projected area and perimeter. (B) Circularity as 
a function of the position along the constriction. This plot of part B can be contrasted to plot of Ta 
for similar conditions shown in Fig. 2B of the main text. The comparison clearly shows that the 
Ta is a more sensitive shape parameter than circularity and should be used for higher sensitivity 
shape characterization of red blood cells.  

 

S.2.2 Circular harmonics. The spherical harmonics is a powerful polynomial expansion 
technique to describe complicated shapes in 3D. 20 We explored the use of circular harmonics to 
accomplish the same goal in 2D. Similar to the spherical harmonics, associated Legendre 
polynomial  �R� is used, but with no dependency on the azimuthal angle or � , i.e., � = 0. In 

particular, we use the function � = �D + ∑ CR�RD�R�+ , where r is the position of the cell nodal points 
in polar coordinates, �D and C� are constant coefficients. 
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Fig. S3. (A) Top row: Approximation of the shape of the projected cell outline with increasing 
number of terms in the circular harmonics. Bottom row:  Shapes corresponding to various 
coefficients for the case of  n = 6  terms in the polynomial. (B), (C) The evolution of the circular 
harmonics coefficients C) and C� as a function of x along the constriction, respectively. 

 

Depending on the number of terms in the Legendre polynomial, one can describe the 
outline of the cells precisely. For instance, in Fig. S3A, we are showing the same outline of the 
cell, but fitted with different number of terms in the circular harmonics function. We can see that 
using six terms can very accurately describe the outline. In addition, we demonstrate the shape 
associated with each one of the coefficients, for instance, the second harmonic coefficient shows 
the elongation of the cell along the x-axis. It is not then surprising that the second harmonic 
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coefficient be related to the Ta and show sensitivity to the Ca as is shown in Fig. S3B. 

 

S.2.3 Shape recovery at exit. We also explored the sensitivity of the cell recovery dynamics to 
Ca in the exit region after the constriction. Fig. S1A shows the domain that we used for this aim 
and is basically the mirror of the entrance region, except the flow is from the smaller channel (the 
constriction) to the larger region. The streamlines of the flow around the cell is also shown. We 
specifically analyzed at the parameter deformation ratio  ] = ¡P/.P, where ¡P and .P are the 
values of the bounding box in x and y dimensions, respectively, as the cells recover to their 
undeformed state.14  

 

 

Fig. S4. Deformation ratio, as defined based on the inset figure, is shown as a function of the 
dimensionless time for the cells that flow in the exit region (see Fig. S1D). The curves associated 
with different Ca clearly shows that the deformation values are more distinguishable within the 
constriction compared to the relaxation dynamics, i.e., the drop of the deformation and the 
recovered values after about two dimensionless times.   

 

Fig. S4 shows deformation ratio DR as a function of the dimensionless time ¢F/G. One 
can clearly distinguish the curve in the initial part of the simulation during the cell travel inside 
the constriction for dimensionless time less than about 2. The relaxation dynamics, i.e. the drop of 
DR and the final values of DR exhibit weaker dependence on capillary number values. 

 

In Table S1, we summarize the numerical values of the variables, the confinement level, £,  
the Taylor deformation, Ta, the normalized velocity of the cells (FPQRR/F that was used to construct 
the surface plot in Fig. 3B and also Fig. 2F.). Commonly, the deformation index ( 1 = ¡P −.P/¡P + .P, where ¡P and .P are the values of the bounding box in x and y dimensions, 
respectively) is used to characterize the shape of RBCs. Our analysis suggests that deformation 
index or deformation ratio, although more sensitive than circularity, still demonstrate fluctuating 
behavior downstream of the constriction and more dependency on the small changes in the 
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membrane shape and therefore are more sensitive to the initial condition. Therefore, using Ta is 
preferred as a more reliable shape parameter. Nevertheless, we report the values of DI in Table S1. 

 

Table S1. £,  Ta, 
¤VWXX¤ , and  1 values for different isocapillary lines that is used for making the 

surface plot, in Fig. 3B and also Fig. 2F of the main work. Note that deformation index (DI) is 
related to deformation ratio (DR) using  1 = � ] − 1�/� ] + 1�.  

Ca ¥ Ta  ¦§¨©©/¦  DR  ª«  
0.2 0.893, 1.01 0.0715, 

0.1392 
1.228, 1.119 

 

1.224, 
1.438 

0.101, 0.18 

0.3 0.783, 0.897, 
1.011, 1.137, 
1.280 

 

0.029, 0.113, 
0.173, 0.227, 
0.283 

 

1.371, 1.272, 
1.165, 1.052, 
0.898 

 

1.096, 
1.313, 
1.526, 
1.763, 2.06  

0.046 0.135 
0.208 0.276 
0.347 

 

0.4 0.785, 0.9, 
1.023, 1.147, 
1.29 

 

0.069, 0.141, 
0.206, 0.259, 
0.31 

 

1.397, 1.3, 
1.202, 1.088, 
0.934 

 

1.190, 
1.385, 
1.63, 
1.851, 
2.123 

0.087, 0.161, 
0.239, 0.298, 
0.36 

 

0.8 0.781, 0.907, 
1.036, 1.166 
1.317 

 

0.133, 0.208, 
0.264, 0.316, 
0.368 

 

1.449, 1.363, 
1.265, 1.154, 
1.007 

 

1.381, 
1.567, 
1.787, 
2.027, 
2.323 

0.149, 0.221, 
0.282, 0.339, 
0.399 

1.6 0.785, 0.916, 
1.046, 1.176, 
1.332 

 

0.217, 0.27, 
0.316, 0.358, 
0.406 

 

1.5, 1.416, 
1.315, 1.205, 
1.057 

 

1.629, 
1.767, 
1.945, 

2.18, 2.466 

0.239, 0.277, 
0.321, 0.371, 

0.423 

 

S.3 Shear modulus sensitivity analysis 

S.3.1 Viscosity ratio effect on the transient behavior. The viscosity ratio is not exactly known 
and is usually approximated based on the Hb concentration. In the literature 21,22, values in the 
range of 3-10 have been considered  with most using 5 for the physiological situation 23, and 
therefore we chose 5. We determined the sensitivity of the results due to increasing the ratio to 10. 
As is depicted in Fig. S5 below, we found that changing the viscosity ratio to 10 affects the 
transient evolution, while marginally changes the steady-state values of the Taylor deformation, 
confinement, and the velocity ratio, and therefore does not affect the surface plot in Fig. 3B of the 
manuscript. 
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Fig. S5. (A) The final shape of the red blood cells after starting with an angle prior to the entrance 
of the constriction. The top row shows the shape in the xy plane and the bottom row in the yz plane. 
The outline of the cell is shown with blue and the equivalent ellipse is shown with purple. (B) The 
transient evolution of the confinement level of the cells and the Taylor deformation for two values 
of the viscosity ratio, 5 (default in our simulations in the main text) and 10. 

 

S.3.2 Impact of ¬, Re, and ® on the steady-state values. As is depicted in Fig. S6 below, we 
found that increasing the bending ratio, decreasing Re, and increasing the viscosity ratio by a factor 
of two marginally change the steady-state values of the Taylor deformation, confinement, the 
velocity ratio (maximum of about 3%), and therefore do not affect the surface plot in Fig. 3B. The 
Re of 0.05-0.1 is consistent with what we have in the experiments and these are all in low-Re 
regime with the length scale being the channel dimension. In Fig. S6 shown below, we also 
demonstrate the impact of reducing Re to 0.05, and it is seen that the transient and the steady-state 
behavior of all critical variables closely follows that of Re = 0.1 (default value). In Fig. S6C, we 
evaluated the impact of higher bending modulus compared to the default value of 0.0033 in our 
simulations, i.e., A> = 0.0066 for the case of Ca = 0.4 and the £ ° 1. While the transient shape 
evolution is affected by this change in A>, the steady-state behavior is marginally affected 
(negligible impact on the velocity ratio and the Taylor deformation and ~3% for the confinement). 
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Fig. S6. The sensitivity analysis of the critical variables (A) Taylor deformation Ta, (B) 
confinement level £, and (C) the velocity ratio for Ca = 0.4 and £ ° 1. The dependency of the 
transient and steady-state behavior of these variables are evaluated for increasing the bending ratio 
(A>), reducing the Re, and increasing the viscosity ratio all by a factor of two compared to the 
default values taken in our original simulations. 

 

S.4 Experimental setup details 

S.4.1 Sample prep. Healthy donor blood samples were obtained with institutional review board 
approval. Within 30 min of withdrawal, blood was loaded into a lithium heparin tube and 
centrifuged at 1,200 g and room temperature. Red blood cells (RBCs) were collected and washed 
twice with phosphate buffered sa1ine solution (Gibco PBS at 1x, pH 7.4, Thermo Fisher, USA) in 
an Eppendorf tube at 1,200 g for 10 min at room temperature. The RBC pellet was collected and 
resuspended in fresh PBS to achieve a final hematocrit of 3%. For the stored cell experiments, the 

RBC pellet was collected and stored in an Eppendorf tube at 4°C for 5 weeks. 
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S.4.2 Chip fabrication and operation. Microfluidic chips were developed to deform RBCs as 
they traveled through small, constricted, channel sections. The chip featured an extended 
serpentine section downstream of the constriction section which increased the hydraulic resistance 
of the device to enable velocities of order 1 mm s-1 for applied inlet gauge pressures of the order 
10 kPa.  We designed channels of 10 mm length (distance between inlet and outlet), 250 μm width, 
and 7 μm uniform depth. In the middle region of each channel, we incorporated a constriction of 
1 mm length and 7 μm width. 

Our devices consisted of a single layer poly-dimethylsiloxane (PDMS) structure bonded to 
a borosilicate glass cover slip.24 The cover slip enabled a clear optical path for imaging with an 
inverted microscope (cf. Section S.4.3). As shown in Fig. S7A, a chrome-on-glass photomask 
(Front Range Photomask, USA) was fabricated and used for SU-8 lithography on four-inch silicon 
wafer mold (Microfluidic Foundry, Berkeley, CA, USA). Next, we mixed, degassed, and poured 
a ratio of 10:1 precursor-to-curing agent of Sylgard 184 (Dow Corning) over our master molds to 

cast the PDMS structures. The PDMS was allowed to cure in an oven at 55°C for 15 min. We then 
peeled off the PDMS slab, diced into individual chips (shown in Fig. S7B), and punched 1 mm 
diameter inlet and outlet holes. Finally, we irreversibly bonded the PDMS structures to number 1 
thickness borosilicate glass cover slips by plasma treating both surfaces to be in contact. 

To measure an individual’s RBC shape morphology distribution, we first dispensed 10-
20 μL of the RBC solution as described in S.4.1 into the inlet reservoir of the microfluidic chip. 
Next, we connected a clear, 1/16” outer diameter poly-tetrafluoroethylene (PTFE) tubing into the 
same (inlet) reservoir. Finally, as shown in Fig. S7B, we initiated flow of RBCs by applying a 
positive gauge pressure on the order of 10 kPA at the upstream end of the PTFE tubing. We note 
that the outlet reservoir was simply held at atmospheric pressure. 

 

Fig. S7. The cured PDMS slab on top of the SU-8 on four-inch silicon wafer, positive mold is 
shown in (A). Each mold permitted the fabrication of 16 individual PDMS chips. Individually 
diced chips were irreversibly bonded to number one thickness glass coverslips, shown in (B), and 
secured onto the microscope stage using adhesive. After 10-20 μL of an individual’s RBC solution 
was dispensed onto the inlet reservoir, the inlet was pressurized to a gauge pressure on the order 
of 10 kPa. Panel (C) shows a bright-field image of the microfluidic chip inlet reservoir and 10 μm 
filter. The posts in the large channel are designed to prevent collapse of the large aspect ratio 
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channel (1:6). After flowing through the large channel section, RBCs entered the constriction 
shown in (D). Finally, after cells exit the constriction, they travel through the serpentine channel 
which is designed with a hydraulic diameter much larger than the rest of the chip. Hence, given a 
fixed inlet-outlet pressure difference, the resistance of this test section governs the flow rate.  

 

S.4.3 Image acquisition. Fig. S8 shows our experimental setup which includes an inverted 
microscope (Eclipse TE 300E, Nikon, Japan) and a custom bright field illumination configuration 
for RBC visualization. A blue, high-power LED (SOLIS-470C, Thorlabs, USA) was first focused 
into a fiber optic cable using a positive (biconvex) lens, as shown in Fig. S8A. The end of the fiber 
optic cable, shown in Fig. S8B, was placed above an air immersion 10x/0.30 Olympus objective 
(Olympus Corporation, Japan) to further condense the LED light as it traveled through the 
microfluidic chip and the RBCs. The forward elastic scatter was subsequently collected by a water 
immersion 20x/0.95 Nikon objective (Nikon, Japan), as shown in Fig. S8D.  This light was 
reflected and filtered with a dichroic mirror (XF015-2, Omega Optical, Semrock, USA). Finally, 
the image was collected by a scientific-grade complementary metal oxide (sCMOS) camera 
(Hamamatsu ORCA-flash4.0 v2, Hamamatsu Photonics, Japan). The proprietary camera software, 
HC Image, was used to acquire 16-bit multi-page TIFF files with a region of interest (ROI) of 64 
× 2048 pixels (corresponding to 20 × 640 μm in object space). Each multi-page TIFF consisted of 
5,000 frames recorded over 20 s. 

  The high-power LED was operated in pulse width modulation (PWM) mode with a 
frequency of 250 Hz and a duty cycle of 1% (yielding an LED on-time of 40 μs per pulse). after 
the camera was externally triggered by a TTL signal from the LED controller and set to a 2 ms 
integration time. Hence, the camera recorded 250 frames per second with an exposure time of 
40 μs. This short exposure time resulted in image streaking of less than 5% of the RBC diameter 
at the highest velocities of 10 mm s-1. All the experiments shown in this work observed RBC 
velocities less than 10 mm s-1. 
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Fig. S8. Experimental setup to record images of an individual’s RBCs under shear-induced 
deformation. The light from a high-power LED was focused into a fiber optic cable (A) and 
delivered into a 10x/0.30 objective (for further condensation) above the microfluidic chip (B). The 
overall setup (C) included a water immersion, 20x/0.95 objective for image collection, filter cube, 
and camera (D). Panel (E) shows the velocity of cells was controlled by adjusting the inlet reservoir 
pressure. 
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S.4.4 Images of RBCs in the constriction for different donors. We here show images of RBCs 
in the entrance region (Fig. S9A) and in the middle of the constriction (Fig. S9B) for the blood 
from five different healthy donors. 

 

Fig. S9. Example and representative raw (unprocessed) experimental images of RBCs as they enter 
(A) and reach steady-state shapes (B) within the 7 by 7 μm constriction. Cells were accelerated by 
applying a small (order 10 kPa) gauge pressure at the microfluidic chip inlet while keeping the 
outlet at atmospheric pressure. Images were recorded by synchronizing an epi-illumination LED 
with camera image acquisition. The images above were acquired with effective exposure time of 
40 μs at a sampling rate of 250 Hz. Our microfluidic system can record hundreds to thousands of 
cells in a few seconds. The donors here correspond to the same donors shown in Figs. 4 and 5 of 
the main text. 

 

S.4.5 Image processing. Prior to cell morphological characterization, raw multi-page TIFF stacks 
(Fig. S10A) were imported into MATLAB 2019a (Mathworks, USA) and background subtracted 
(Fig. S10B). The background subtraction was performed by computing the temporal median pixel 
value at each pixel among ten prior and ten subsequent frames (21 total frames). This “moving 
median” was subtracted from each pixel. Next, to detect cells, we obtained the absolute value of 
all frames and performed a multi-step edge detection scheme. This scheme sequentially consisted 
of: (1) binarization based on background value threshold, (2) area filter to remove objects much 
larger or smaller than RBC, (3) object dilation to close open edges, (4) flood-fill operation on 
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holes, and (5) erosion of edges. After computing each cell contour in each frame, the code 
performed morphological operations and calculations such as area (confinement), x-centroid, y-
centroid, and Taylor deformation parameter, Ta, calculation (Fig. S10B). The Taylor deformation 
was calculated by calculating the cell second area moment, as described in section S.2.2. 

Finally, we tracked individual cells across frames by performing a chi-square minimization 
in which each cell in a frame i is matched to a cell in the subsequent frame i+1. We chose a chi 
squared statistic similar to that of Rose et al.25 which included cell x-location (and also adjusted 
for cell velocity estimate). In our approach, the x-coordinate term in the chi-square minimization 
provided the most efficient discriminant for identifying the same cell across frames. Note cell 
tracking was robust as the typical distance between cells (shown in Fig. S10C) in a frame was 
typically larger than the distance travelled by a single cell between adjacent frames. The code can 
process several 1000’s cells in ~10 min. 

 

Fig. S10. Summary of automated image processing for cell identification, tracking, and shape 
quantification.  Panel (A) shows a flow chart summarizing morphological processing steps.  Panel 
(B) shows raw (top row), background subtracted and absolute value operation (middle row), and 
detected cell (bottom row) images. (C) schematically shows the cell tracking component of the 
image processing code which was implemented in MATLAB. Our code can detect, track, and 
quantify the shear modulus of thousands of cells in minutes.  

 

S.5 Measurements of shear moduli for many donors 

As described in the main text, our platform is capable of quickly obtaining an RBC shear modulus 
distribution for a donor. Fig. S11 shows the shear modulus distribution of RBCs from six donors 
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separate from those in the main work. Note that the geometric mean and geometric standard 
deviation is used, which as mentioned in the main text, is the proper statistical values for a log-
normal distribution. 

 

 

Fig. S11. Plots of Taylor deformation Ta versus confinement ϵ data and extracted measurement of 
shear moduli for six additional donors (each row corresponds to a different donor) beyond those 
shown in the main work. The dots in the left column shows experimental measurements of the 
steady values of Ta versus ϵ for individual cells. The scattered points are overlaid on the 
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computationally generated (see Section 2.2 of the main work) Ta versus ϵ surface, where the color 
at each location corresponds to a cell-specific Capillary number Cacell. The color of each 
experimental data point shows the normalized density of points at that location. Cacell, and the 
individual cell velocity, are used to predict the shear modulus of a cell. The right column shows 
probability density functions of shear moduli, generated from the experimental data sets on the 
right. The six rows correspond to the six individual donor blood samples. 

 

S.6 Comparison of shear moduli with the literature 

In Fig. S12, we depict the distribution of the shear modulus taken from all of the healthy donors 
given in S.4. The corresponding geometric mean and standard deviation is shown in panel B of 
this figure which is compared with the values of optical tweezers,26,27 micropipette aspiration,28,29 
and dynamic membrane fluctuation.30 

 

Fig. S12. The comparison of the average shear modulus in our experiment with the ones in the 
literature. Note that we use a geometric mean L̅ ∗ and geometric standard deviation ²*, since we 
found that the shear modulus distribution is log-normal. For the literature review, we provide the 
arithmetic means L̅ and standard deviations ². 

 

We can clearly see that the average value of the shear modulus is consistent with standard 
optical tweezers and micropipette aspiration for normal cells. 

 

S.7 Correlation between shear moduli and cell speed 

In addition, we evaluated the correlation of the shear modulus distribution on the velocity of the 
cells, where we increased the velocity by a factor of 1.5. We found that the shear modulus and its 
distribution is not correlated with the velocity of the cells. 
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Fig. S13. The shear modulus distribution for three different cell velocities. We expect the shear 
modulus to not have correlation with the speed of the cells inside the constriction, which is 
confirmed with this figure. 

 

S.8 Error in experimental measurement of different shape factors 

Finally, we here investigated the statistical efficiency of several measures of cell deformation such 
as ka, `),31 (also see SI, S.2.1), eccentricity ³,32 compactness P̀y�´,33 and [deformation ratio]  ] 

(cf. SI, S.2.3 and related references,31,34). We found that image noise has a strong influence on any 
measure using the length of the contour of the boundary of the cell image. The latter include ` and  ]. This is apparent from the large image-to-image fluctuation of these quantities for a given cell 
(c.f. Fig. S14). In contrast, the area moments associated with quantifying ka are less sensitive to 
image noise. On the right-hand side of Fig. S14 we show that shape factors determined by second 
order moments of the cell image (e.g. ka, ³, and P̀y�´) are more statistically efficient estimators35 

of cell shape and exhibit lower image-to-image variation for the same cell. First, we describe the ³ as 

 ³ = Ca , (S17) 

where C is half of the distance between the foci and a is the major axis length of an ellipse that has 
the same second order moments as the cell. In turn, P̀y�´ is given by 

 P̀y�´ = �4� ¶2a , (S18) 

where ¶ is the cell area and 2a is (again) the major axis length of an ellipse that has the same 
second order moments as the cell. Fig. S14 compares these shape factors. 

We here describe the formulation of a figure of merit to describe shape factor precision and 
apply it (Fig. S14) to select the most efficient statistical estimator of deformation. In the 
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downstream (L > 300 µm) region of the constriction, we expect RBCs to assume a steady state 
shape. For a single cell, we can make · observations of multiple shape factors ��,¸ (where ¹ and º 

respectively denote the shape factor and cell number). Note · is the number of frames which 
capture the cell as it travels across the image ROI and averages around 20 for our experiments. 

The estimated value of ��,¸ is defined as the cell sample mean ���,¸, given by 

 ���,¸ = 1· » ��,¸,?
�

?�+  , (S19) 

where E denotes the index of the measurement number for that shape factor. Similarly, the 

estimated mean shape factor value across all cells ���, is given by 

 ��� = 1· » ���,¸,�
¸�+  (S20) 

 We hypothesize that, for a fixed shape factor and cell, any variation amongst ��,¸,? is due 

to image noise. Hence, the (single-cell) error for each shape factor ¼½�,¸ is here defined as the sample 

standard deviation of measurements for a single cell. Mathematically, 

 ¼½�,¸ = ¾ 1· − 1 »¿��,¸,? − ���,¸À)�
?�+  .  (S21) 

The absolute value of ¼½�,¸, however, may not be a useful measure of the error associated with the 

measurement technique. Note there are two sources of variation for each shape parameter: 1) frame 
to frame error in shape factor measurements for the same cell and 2) underlying distributions of 
cell mechanical properties which lead to different deformations from cell to cell. 

We estimate the underlying variation of a shape factor amongst many cells ¼½� as 

 ¼½� = ¾ 1· − 1 »¿���,¸ − ���À)�
¸�+  . (S22) 

 Finally, we quantify the “precision” of a measurement technique as the ratio of the intra-
cellular variations of shape factor measurements to the variations among the population. We call 
this a standard deviation ratio Á ]. That is, 

 Á ] = ¼½�,¸¼½� . (S23) 

Note that Á ] is evaluated for every shape parameter (index ¹) and cell (index º). 
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Fig. S14. Quantitative comparison of nondimensional shape factors to measure RBC deformation. 
On the left are shown (top to bottom) the Taylor deformation ka, circularity `, eccentricity ³, 
compactness P̀y�´, and deformation ratio  ] versus L for the same group of cells (w = 100). Each 

line represents a single cell trajectory and the lines have been made slightly transparent to convey 
density information. Since L > 400 µm, we expect cells to have achieved a steady state shape. We 
here define the standard deviation ratio Á ] as the ratio of the standard deviation of a shape factor 
for a single cell trajectory ¼½�,¸ to the standard deviation of mean estimates across all cells ¼½� (i.e. ¼PQRR ¼½�⁄  ). On the right are shown violin plots of the Á ] for the same shape factors as on the left. 
The horizontal lines show the mean Á ] of each shape factor. Note that the mean SDRs for ka, P̀y�´, and ³ (which are based on second order moments of the cell image) are smaller than the 

mean SDRs for ` and   (based on zero order moments). This suggests shape factors based on 
second order moments are more statistically efficient estimators of cell shape and exhibit lower 
image-to-image variation for the same cell. 

 

S.9 List of supplementary movies 

Table S2. Three simulation and two experimental movies are provided and described as follows. 
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“simulation_shape_evolution.avi” The simulation result of a single cell with Ca = 0.8, 

started with y-coordinate of about 15 µm, when it is 

located 20 µm prior to the constriction, and with 
discoidal orientation of 45 degrees with respect to y-
axis.  

“simulation_orientation_impact.avi” The simulation result of two cells with Ca = 0.4, 

started with y-coordinate of 7 µm, when it is located 

about 15 µm prior to the constriction, and with no 
discoidal orientation, and with 20 degrees discoidal 
orientation with respect to y-axis, respectively. 

“simulation_location_impact.avi” The simulation result of four cells with Ca = 0.4. The 
y and z coordinates of the cells are varied to evaluate 
the impact of initial condition on the final values of 
Ta and confinement. 

“experimental_raw.avi” Raw experimental images of red blood cells in the 
middle of the constriction. (The left edge of the 

frame corresponds to a location 300 µm downstream 
of the constriction.) The experimental setup is 
described in Section S.3. The movie has been slowed 
down 10 times. 

“experimental_processed.avi” Same experimental images as 
“experimental_raw.avi” with background 
subtraction, centroid tracking, and edge detection. 
The process for image processing has been described 
in Section S.3.5 
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