Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2020

Supplementary Note 1

Figure S1: Left – Absolute fringe space deviation with misaligned channels, here plotted for misalignment values of $\Delta \theta = 5^{\circ}$, 10°, 15° and 20°. Right – The channel misalignment value, $\Delta \theta$, is given by the divergence between the intended channel angle (with respect to the acoustic propagation direction) and the intended one (here for an intended θ value of 0°).

Figure S1 above shows the absolute change in fringe space values, $|\Delta\lambda_{\theta}|$, for different values of misalignment, calculated according to

$$|\Delta\lambda_{\theta}| = \frac{\lambda_{\theta} - \lambda_{\theta - \Delta\theta}}{\lambda_{\theta}}$$

The channel misalignment is measured by the difference in θ between the intended channel angle and the fabricated one. Even in the absence of alignment markers on the substrate and on the channel, values in $\Delta\theta$ are highly unlikely to be greater than 10°. For a design channel angle of 0° and misalignments of up to $\Delta\theta = 20^\circ$, the resulting fringe spacings vary less than 2.3% (very left of Figure S1 above) from the fringe spacing at 0°. For comparison, a conventional half-wavelength channel for particle focusing, perhaps 5 mm long with $\lambda_{SAW} = 300 \,\mu$ m, would have nodal positions 180° out of phase – and thus be entirely non-functional – with a misalignment of only $\Delta\theta = 1.7^\circ$, though even smaller misalignments would result in particles being directed to non-intended outlets.

The effect of misalignment on fringe spacing deviation here is larger for intermediate angles (around $\theta = 90^{\circ}$), though even for a channel design angle of $\theta = 90^{\circ}$ a misalignment of $\Delta \theta = 20^{\circ}$ results in only a shift of ~13% in fringe spacing. In the case examined in our manuscript, where a channel is oriented at $\theta = 90^{\circ}$, choosing a sufficiently small channel width (i.e. W $\approx \lambda_{90^{\circ}}$) means that even such large misalignments still results in only two acoustic force potential minima at the channel edges. Indeed, we show in our final figure that a 'misalignment' of all possible angles (0° \rightarrow 180°) still results in only two focusing positions at the channel edges.