Supplementary information for

Yolk-albumen-shell structure of mixed Ni-Co oxide with ultrathin carbon

shell for high-sensitivity glucose sensors

Xuan Zhang^{1, 2}, Yawei Zhang¹, Maowen Xu¹*, Wei Guo², Kai Wan², Ting Zhang³, Jordi Arbiol^{3,4}*, Yong-Qing Zhao⁵, Cai-Ling Xu⁵, Jan Fransaer²*

¹Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium. E-mail: <u>jan.fransaer@kuleuven.be</u>;

² Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, PR China. E-mail: xumaowen@swu.edu.cn;

³ Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain. E-mail: arbiol@icrea.cat_

⁴ ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain

⁵ State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China

Supplementary Figures and Tables2
Figure S1: XRD pattern of (a) NiNP@C and (b) CoNP@C2
Figure S2: SEM images of NiNP@C
Figure S3: SEM images of YASNiCo@C4
Figure S4: SEM images of CoNP@C5
Figure S5: EELS chemical composition mapping of NiNP@C6
Figure S6: EELS chemical composition mapping of CoNP@C7
Figure S7: Amperometric responses of carbon paper to the addition of 1 mM glucose8
Figure S8: The selectivity study of YASNiCo@C
9
Table S1: Comparison of the sensitivity with other electrodes reported in literatures10
References

Figure S1. XRD pattern of (a) NiNP@C and (b) CoNP@C. (using Cu K_{α} radiation with wave length $\lambda = 0.15405$ nm and Ni filter with a step size of 0.02°)

Figure S2. SEM images (at an acceleration voltage of 15 kV) of NiNP@C

Figure S3. SEM images (at an acceleration voltage of 15 kV) of YASNiCo@C

Figure S4. SEM images (at an acceleration voltage of 15 kV) of CoNP@C

Figure S5. EELS chemical composition maps of NiNP@C from the area marked by the red square on the STEM micrograph. Individual Ni $L_{2,3}$ -edges at 855 eV (red), O K-edge at 532 eV (blue) and C K-edge at 284 eV (yellow) as well as the composite (O-C and Ni-O-C) elemental maps.

Figure S6. EELS chemical composition maps of CoNP@C from the area marked by the red square on the STEM micrograph. Individual Co $L_{2,3}$ -edges at 779 eV (green), O K-edge at 532 eV (blue) and C K-edge at 284 eV (yellow) as well as the composite (O-C and Co-O-C) elemental map.

Figure S7. Amperometric response of carbon paper to the addition of 1 mM glucose at +0.55 V vs Hg/HgO to a solution of 0.1 M NaOH.

Figure S8. Amperometric response of YASNiCo@C catalyst coated on carbon paper after the addition of 1 mM of glucose and different concentrations of interferences at an applied potential of +0.55 V vs Hg/HgO to a solution of 0.1 M NaOH.

<u>10</u> po	rea in interatares.						
Ref.	Catalyst	Sensitivity	linear range	applied	limit of detection	electrolyte	
		$(\mu A \ cm^{-2} \ mM^{-1})$	(µM)	potential (V)	(µM)		
Cobalt oxide							
S1	Co ₃ O ₄ nanostructures	246.8	0.5-1000	0.54	0.012	0.1 M NaOH	
S2	Cobalt nitride (Co ₄ N)	1137.2	600-10000	0.55	0.1	0.1 M NaOH	
S3	Cobalt nitride nanosheets	921.18	10-8000	0.55	0.1	0.1 M NaOH	
S4	Mesoporous Co ₃ O ₄ Nanobundle	88	0.6-160	0.58	0.6	0.1 M NaOH	
S5	Co-CoO-Co ₃ O ₄ nanocomposites	949.3	5-600	0.55	0.92	0.1 M KOH	
S 6	Cobalt oxide nanoflowers	693.02	5-60	0.60	0.04	0.01M NaOH	
S 7	$3D/Co_3O_4$ thorn-like nanostructures	180	1-1000	0.55	0.046	0.1 M NaOH	
S 8	3D hierarchical porous Co ₃ O ₄ film	366.03	1-500	0.60	1	0.1 M NaOH	
S9	Porous CoOOH nanosheet	526.8	3-1109	0.52	1.37	0.1 M NaOH	
S10	Nanoporous cobalt oxide nanowires	300.8	5-570	0.60	5	0.3 M NaOH	
S11	Co ₃ O ₄ nanoparticles	471.5	1-300	0.59	0.1	0.1 M NaOH	
S12	CoNPs/ITO	1720	5-180	0.59	0.25	1 M NaOH	
Nickel oxide							
S13	Sandpaper-supported nickel coatings	1163.3	10-4300	0.60	0.25	0.1 M NaOH	
S14	Ni layers modifie dboron-dope ddiamon	839.3	10-5640	0.40	1.23	1 M NaOH	
S15	Nanostructured NiO electrode	206.9	100-10000	0.55	1.16	0.5 M NaOH	
S16	Ni(OH) ₂ /PGE	948	4-3500	0.57	2	0.1 M NaOH	
S17	Nf-Ni(OH)2@oPPyNW	1049.2	1-4863	0.54	0.3	0.1 M NaOH	
S18	NiO nanostructures	1915	100-5000	0.48	0.7	0.1 M NaOH	
S19	Hedgehog-like NiO nanostructures	1052.8	500-4500	0.49	1.2	0.1 M NaOH	
S20	NiO nanosheets	36.13	up to 10000	0.50	0.9	0.5 M NaOH	
S21	Macro-mesoporous Ni(OH) ₂	243	10-8300	0.50	1	0.1 M NaOH	
Cobalt-Nickel bimetallic oxide							
S22	Ni-Co Layered Double Hydroxide	292.84	5-50	0.55	0.8	0.1 M NaOH	
S23	NiCo2O4 nanowires	72.4	0.37-2000	0.44	0.37	0.1 M NaOH	
S24	NiCo2O4 hollow nanospheres	1917	10-300	0.55	0.6	0.2 M NaOH	
S25	NiCo2O4 hollow nanorods	1685.1	3-1000	0.60	0.16	0.1 M NaOH	
S26	Ni-Co bimetal nanowires	695	5-10000	0.45.	1.2	0.1 M NaOH	
S27	NiCo-LDH	1235	5-1200	0.50	1.6	0.1 M NaOH	
S28	Ni-Co alloy nanostructures	536.2	1-5000	0.50	0.39	0.1 M NaOH	
MOF-derived metal oxide							
S29	CuO nanorod	1523.5	up to 1250	0.60	1	0.1 M NaOH	
S30	GS@ZIF-67 hybrids	1521.1	1-805.5	0.55	0.36	0.1 M NaOH	
S31	Cu Nanospheres@Porous carbon	28.67	0.15-5620	0.45	0.48	0.1 M NaOH	
S32	Cu-based structures	1255	3.76-1400	0.50	3.76	0.1 M NaOH	
S33	Co nanoparticles with porous carbon	227	100-1100	0.50	5.69	0.1 M NaOH	
S34	CuO/NiO-Carbon Nanocomposite	586.7	0.1-4500	0.65	0.037	0.1 M NaOH	
S35	NiCo LDH nanosheets/graphene	344	5-800	0.60	0.6	0.1 M NaOH	
This	YASNiCo@C	1964	5-1000	0.55	0.75	0.1 M NaOH	

Table S8. Comparison of the sensitivity of YASNiCo@C electrode with other electrodes reported in literatures.

References:

S1. J. N. Xu, F. H. Li, D. D. Wang, M. H. Nawaz, Q. B. An, D. X. Han and L. Niu, Biosensors &

Bioelectronics, 2019, 123, 25-29.

S2. T. T. Liu, M. A. Li and L. P. Guo, Talanta, 2018, 181, 154-164.

S3. T. T. Liu, M. Li, P. Dong, Y. J. Zhang and L. P. Guo, Sensors and Actuators B-Chemical, 2018, 255, 1983-1994.

S4. A. V. N. Kumar, Y. H. Li, S. L. Yin, C. J. Li, H. R. Xue, Y. Xu, X. N. Li, H. J. Wang and L. Wang, Chem-Asian J, 2018, 13, 2093-2100.

- S5. J. Yu, Y. H. Ni and M. H. Zhai, Journal of Alloys and Compounds, 2017, 723, 904-911.
- S6. S. Mondal, R. Madhuri and P. K. Sharma, J Mater Chem C, 2017, 5, 6497-6505.

S7. P. Kannan, T. Maiyalagan, E. Marsili, S. Ghosh, L. H. Guo, Y. J. Huang, J. A. Rather, D. Thiruppathi, J. Niedziolka-Jonsson and M. Jonsson-Niedziolka, Analyst, 2017, 142, 4299-4307.

S8. S. S. Fan, M. G. Zhao, L. J. Ding, J. J. Liang, J. Chen, Y. C. Li and S. G. Chen, Journal of Electroanalytical Chemistry, 2016, 775, 52-57.

S9. L. Zhang, C. L. Yang, G. Y. Zhao, J. S. Mu and Y. Wang, Sensors and Actuators B-Chemical, 2015, 210, 190-196.

- S10. L. Q. Kang, D. P. He, L. L. Bie and P. Jiang, Sensors and Actuators B-Chemical, 2015, 220, 888-894.
- S11. L. Han, D. P. Yang and A. H. Liu, Biosensors & Bioelectronics, 2015, 63, 145-152.
- S12. T. Wang, Y. A. Yu, H. F. Tian and J. B. Hu, Electroanalysis, 2014, 26, 2693-2700.

S13. Y. M. Xu, L. Hou, H. Zhao, S. Y. Bi, L. Zhu and Y. X. Lu, Applied Surface Science, 2019, 463, 1028-1036.

S14. H. Y. Long, X. Z. Liu, Y. N. Xie, N. X. Hu, Z. J. Deng, Y. L. Jiang, Q. P. Wei, Z. M. Yu and S. G. Zhang, Journal of Electroanalytical Chemistry, 2019, 832, 353-360.

S15. C. Heyser, R. Schrebler and P. Grez, Journal of Electroanalytical Chemistry, 2019, 832, 189-195.

S16. M. L. Chelaghmia, M. Nacef, A. M. Affoune, M. Pontie and T. Derabla, Electroanalysis, 2018, 30, 1117-1124.

S17. J. Yang, M. Cho, C. Pang and Y. Lee, Sensors and Actuators B-Chemical, 2015, 211, 93-101.

S18. R. A. Soomro, Z. H. Ibupoto, Sirajuddin, M. I. Abro and M. Willander, Journal of Solid State Electrochemistry, 2015, 19, 913-922.

S19. R. A. Soomro, Z. H. Ibupoto, Sirajuddin, M. I. Abro and M. Willander, Sensors and Actuators B-Chemical, 2015, 209, 966-974.

S20. H. Liu, X. L. Wu, B. Yang, Z. J. Li, L. C. Lei and X. W. Zhang, Electrochimica Acta, 2015, 174, 745-752.

S21. Y. Fan, Z. J. Yang, X. H. Cao, P. F. Liu, S. Chen and Z. Cao, Journal of the Electrochemical Society, 2014, 161, B201-B206.

S22. Y. J. Gao, Q. H. Yu, Y. T. Du, M. Yang, L. Gao, S. Q. Rao, Z. Q. Yang, Q. C. Lan and Z. J. Yang, Journal of Electroanalytical Chemistry, 2019, 838, 41-47.

S22. G. Ni, J. Cheng, X. Dai, Z. H. Guo, X. Ling, T. Yu and Z. J. Sun, Electroanalysis, 2018, 30, 2366-2373.

S23. Z. H. Qin, Q. P. Cheng, Y. Lu and J. F. Li, Applied Physics a-Materials Science & Processing, 2017, 123.

S24. W. Huang, Y. Cao, Y. Chen, J. Peng, X. Y. Lai and J. C. Tu, Applied Surface Science, 2017, 396, 804-811.

S25. J. Yang, M. Cho and Y. Lee, Biosensors & Bioelectronics, 2016, 75, 15-22.

S26. K. Ramachandran, T. R. Kumar, K. J. Babu and G. G. Kumar, Scientific Reports, 2016, 6.

S27. J. Chen, Q. L. Sheng, Y. Wang and J. B. Zheng, Electroanalysis, 2016, 28, 979-984.

S28. M. Ranjani, Y. Sathishkumar, Y. S. Lee, D. J. Yoo, A. R. Kim and G. G. Kumar, Rsc Advances, 2015, 5, 57804-57814.

S29. K. Kim, S. Kim, H. N. Lee, Y. M. Park, Y. S. Bae and H. J. Kim, Applied Surface Science, 2019, 479, 720-726.

S30. X. R. Chen, D. Lau, G. J. Cao, Y. Tang and C. Wu, Acs Appl Mater Inter, 2019, 11, 9374-9384.

S31. Y. Xie, Y. H. Song, Y. Y. Zhang, L. J. Xu, L. F. Miao, C. W. Peng and L. Wang, Journal of Alloys and Compounds, 2018, 757, 105-111.

S32. L. B. Shi, X. H. Niu, H. L. Zhao and M. B. Lan, Chemelectrochem, 2017, 4, 246-251.

S33. L. B. Shi, Y. F. Li, X. Cai, H. L. Zhao and M. B. Lan, Journal of Electroanalytical Chemistry, 2017, 799, 512-518.

S34. V. Archana, Y. Xia, R. Y. Fang and G. G. Kumar, Acs Sustain Chem Eng, 2019, 7, 6707-6719.

S35. E. Asadian, S. Shahrokhian and A. I. Zad, Journal of Electroanalytical Chemistry, 2018, 808, 114-123.