Supplementary information

Studies of the labile lead pool using a rhodamine-based fluorescent probe

Jianping Zhu,1 Jia Hao Yeo,1 Amy A. Bowyer,1 Nicholas Proschogo,1,2 Elizabeth J. New1,2

1. University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
2. University of Sydney, Sydney Nano Institute, Sydney, NSW, 2006, Australia
1. **Materials**

All chemicals were purchased from Combi-Blocks or Merck and used without further purification. Solvents were laboratory grade. Aqueous solutions were prepared using Milli Q water. The stock solutions of metal ions were prepared from FeCl$_3$ \cdot 6H$_2$O, Fe(NH$_4$)$_2$(SO$_4$)$_2$, Cu(NO$_3$)$_2$, Zn(NO$_3$)$_2$, 6H$_2$O, Ba(OH)$_2$, 8H$_2$O, Pb(NO$_3$)$_2$, HgCl$_2$, Ag(NO$_3$)$_2$, MnCl$_2$, 2H$_2$O, Co(NO$_3$)$_2$, 6H$_2$O, CrCl$_3$, 6H$_2$O, Ni(NO$_3$)$_2$, Cd(NO$_3$)$_2$, 4H$_2$O, KCl, CaCl$_2$, NaCl, MgCl$_2$, 6H$_2$O, AlCl$_3$, KI, with Milli Q water.

2. **Instrumentation**

Fluorescence and UV-vis absorption spectra were recorded on Perkin Elmer Enspire Multimode Plate Reader. 1H NMR and 13C NMR spectra were collected on Bruker DRX 300 spectrometer. Low-resolution ESI mass spectrometry was performed on a Bruker Amazon SL mass spectrometer. High-resolution mass spectrometry was collected on a Thermo LTQ Orbitrap XL mass spectrometer. Inductively coupled plasma mass spectrometry (ICP-MS) was recorded on Perkin Elmer Nexion 350X Inductively Coupled Plasma Mass Spectrometer. Single Cell ICP-MS was collected on Perkin Elmer Nexion 2000B Inductively Coupled Plasma Mass Spectrometer.

3. **Cellular experiments**

Cell culture

DLD-1 cells (passage number below 20) were cultured in a humidified 5% CO$_2$ atmosphere at 37 °C in advanced DMEM (Dulbecco’s modified eagle medium) supplemented with 2% fetal bovine serum (v/v) and 2 mM glutamine. DLD-1 cells were passaged every 2-3 days at a density of 1.0 x 106 cells.

K562 cells (passage number below 20) were cultured in a humidified 5% CO$_2$ atmosphere at 37 °C in advanced RPMI (Roswell Park Memorial Institute) medium supplemented with 5% fetal bovine serum (v/v) and 2 mM glutamine. K562 cells were passaged every 2-3 days at a density of 0.5 x 106 cells.

Confocal imaging experiments

Confocal images were collected on Olympus FluoView FV3000 Confocal microscope with Olympus UPLanSApo 60x water-immersion objective lens (NA = 1.20). DLD-1 cells were cultured as described above. Cells were suspended in advanced DMEM. 1.0 x 106 cells were seeded onto 35 mm glass-bottom dishes (MatTek Corporation), then incubated in a humidified 5% CO$_2$ atmosphere at 37 °C for 24 h to make sure the adherence of cells. Cells were treated with 1 mL of advanced DMEM containing Pb(NO$_3$)$_2$ (50 µM) for 4 h, washed with PBS for 3 times, then incubated with 1 mL of advanced DMEM containing RPB1 (50 µM) for 30 min, washed with PBS for 3 times. 1 mL of FluoroBrite DMEM supplemented with 2% fetal bovine serum (v/v) and 2 mM glutamine was added into cells before imaging.

For colocalisation experiments, cells were pretreated with 1 mL of advanced DMEM containing Pb(NO$_3$)$_2$ (50 µM) for 4 h, washed with PBS for 3 times, then incubated with 1 mL of advanced DMEM containing RPB1 (50 µM) and LysoTracker Blue (100 nM) for 30 min, washed with PBS for 3 times. 1 mL of FluoroBrite DMEM supplemented with 2% fetal bovine serum (v/v) and 2 mM glutamine was added into cells before imaging.

Flow cytometry experiments

Approximately 2.0 x 106 K562 cells were treated with haemin (30 µM) for different time, washed with PBS for 3 times, followed by treatment of Pb(NO$_3$)$_2$ (50 µM) for 4 h in a humidified 5% CO$_2$ atmosphere at 37 °C. Then cells were incubated with RPB1 (50 µM) for 30 min, washed with PBS for 3 times and assessed on Gallios Flow Cytometer (5+3+2 configuration). A total number of 1 x 106 events were collected and analysed. Data collected from the Gallios flow cytometer were analysed on FlowJo version 10.6 (TreeStar)
Single cell ICP-MS experiments

Approximately 1.0×10^6 K562 cells were treated with haemin (30 µM) at different time-points and incubated in the cell culture incubator (humidified 5% CO$_2$ atmosphere at 37 °C). Cells were washed with PBS for 3 times, followed by treatment with Pb(NO$_3$)$_2$ (50 µM) for 4 h in the cell culture incubator. Cells were again washed with PBS for 3 times and resuspended to a final concentration of 100,000 cells/mL. Lead content in cells were assessed using Perkin Elmer NexION 2000B Inductively Coupled Plasma Mass Spectrometer (coupled to an ESI-SC-µ DX autosampler), with a Sample Flow Rate of 0.01 mL/min with PBS as rinse solvent. Measurements were performed with a 50 µs Dwell Time over a Scan Time of 60 sec. Data acquired were exported from the SC-ICP-MS and were analysed on GraphPad Prism.

4. Synthesis

Rhodamine B hydrazide (1) was synthesised according to literature procedures.1 A solution of rhodamine B (2.3 mmol, 1.10 g) and hydrazine monohydrate (1.12 mL) in methanol (30 mL) was heated under reflux overnight. Then reaction solution was poured into distilled water (50 mL) and extracted with ethyl acetate (3 x 50 mL). The extract was dried with anhydrous sodium sulfate, filtered and evaporated. Crude residue was purified by column chromatography on silica gel (MeOH : CH$_2$Cl$_2$, 1 : 30) to give compound 1 as pink solid (516.8 mg, 49.2%).1H NMR (300 MHz, CDCl$_3$): δ 7.95-7.93 (m, 1H), 7.46-7.44 (m, 2H), 7.11-7.09 (m, 1H), 6.47-6.43 (m, 4H), 6.30 (d, J = 9 Hz, 2H), 3.62 (s, 2H), 3.34 (q, J = 6 Hz, 8H), 1.17 (t, J = 6 Hz, 12H). LR-ESI-MS: C$_{28}$H$_{32}$N$_4$O$_2$, [M+Na]$^+$, found 479.27, calculated 479.58.

Methyl 6-(hydroxymethyl)picolinate (2) was synthesised following literature procedures.2 Sodium tetrahydridoborate (10.31 mmol, 390 mg) was slowly added at 0 °C to a solution of dimethyl pyridine-2,6-dicarboxylate (10.25 mmol, 2.0 g) in a dry 7 : 3 mixture of MeOH / CH$_2$Cl$_2$ (100 mL). The reaction mixture was stirred for 3 h at rt and then neutralised with an aqueous saturated NH$_4$Cl solution (50 mL). After extraction with CH$_2$Cl$_2$ (3 x 50 mL), the combined organic extract was dried with anhydrous sodium sulfate and solvent was removed under reduced pressure. The resulting crude residue was purified by column chromatography (hexane : ethyl acetate, 1 : 1) giving compound 2 as white solid (1.03 g, 60.05%).1H NMR (300 MHz, MeOD): δ 8.04-7.95 (m, 2H), 7.79-7.75 (m, 1H), 4.75 (s, 2H), 3.97 (s, 3H). LR-ESI-MS: C$_8$H$_9$NO$_3$, [M+Na]$^+$, found 190.02, calculated 190.05; [2M+Na]$^+$, found 357.05, calculated 357.11.

Methyl 6-(bromomethyl)picolinate (3) was synthesised according to literature.2 Phosphorus tribromide (11.1 mmol, 1.04 mL) was added at 0 °C to a solution of compound 2 (10.3 mmol, 1.72 g) in anhydrous CHCl$_3$ (150 mL). The reaction mixture was stirred for 4 h at rt, then neutralised at 0 °C with aqueous saturated K$_2$CO$_3$ solution (100 mL). After extraction with CH$_2$Cl$_2$ (2 x 50 mL), the combined organic extract was dried with Na$_2$SO$_4$ and the solvent was removed under reduced pressure, leading to pure compound 3 as white solid (2.11 g, 89.2%).1H NMR (300 MHz, CDCl$_3$): δ 8.08-8.05 (m, 1H), 7.90-7.83 (m, 1H), 7.71-7.67 (m, 1H), 4.65 (s, 2H), 4.02 (s, 3H). ESI-MS: C$_8$H$_8$BrNO$_2$, [M+Na]$^+$, found 251.98, calculated 251.96; [2M+Na]$^+$, found 482.93, calculated 482.93.

RPb1. A solution of rhodamine B hydrazide (1 mmol, 456.59 mg) and methyl 6-(bromomethyl)picolinate (2 mmol, 460.12 mg) and potassium carbonate (2 mmol, 276.40 mg) in dry CH$_3$CN was heated under reflux overnight. Upon completion, solvent was removed. The residue was extracted with CH$_2$Cl$_2$ and washed with water. Organic layer was dried with Na$_2$SO$_4$ and concentrated, then purified by column chromatography (MeOH : CH$_2$Cl$_2$, 1 : 60). RPb1 was obtained as an off white solid (218.92 mg, 29%).1H NMR (300 MHz, CDCl$_3$): δ 7.97-7.92 (m, 1H), 7.68 (d, J = 6 Hz, 2H), 7.49-7.44 (m, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.07-7.01 (m, 1H), 6.83 (d, J = 6 Hz, 2H), 6.33 (s, 1H), 6.30 (s, 1H), 6.28 (d, J = 3 Hz, 2H), 6.02 (d, J = 3 Hz, 1H), 5.99 (d, J = 3 Hz, 1H), 4.72 (d, J = 15 Hz, 2H), 4.30 (d, J = 15 Hz, 2H), 3.88 (s, 6H), 3.26 (q, J = 8 Hz, 8H), 1.09 (t, J = 7.5 Hz, 12H).13C NMR (75 MHz, CDCl$_3$): 166.34, 165.85, 159.27, 154.07, 151.20, 148.50, 146.35, 136.29, 132.77, 130.99, 129.24, 128.22, 126.55, 124.18, 122.86, 122.69, 107.81, 105.92, 97.60, 65.65, 63.78, 52.59, 44.28, 12.58. HR-ESI-MS: C$_{44}$H$_{46}$N$_6$O$_6$, [M+Na]$^+$, found 777.3371, calculated 777.3371.
5. Supporting figures

Fig. S1 UV-vis absorbance spectra of RPb1 (20 µM) in the presence of various amounts of Pb²⁺ (0-28 µM) in HEPES buffer (20 mM, pH 7.4, containing 2% DMSO as a cosolvent, v/v). The inset shows color of RPb1 (20 µM) before (left) and after (right) addition of Pb²⁺ (20 µM).

Fig. S2 Fluorescence intensity of RPb1 (20 µM) at 580 nm with increasing concentrations of Pb²⁺ in HEPES buffer (20 mM, pH 7.4, containing 2% DMSO as a cosolvent, v/v).

Fig. S3 Job’s plot of RPb1 with Pb²⁺ in HEPES buffer (20 mM, pH 7.4).
Fig. S4 Benesi-Hildebrand plot of RPb1 (20 µM) with different concentrations of Pb²⁺ in HEPES buffer (20 mM, pH 7.4, containing 2% DMSO as a cosolvent, v/v). \(y = 4.06792 \times 10^{-6} + 5.48016 \times 10^{-11}x \)

Fig. S5 Fluorescence intensity of RPb1 (20 µM) at 580 nm upon alternative addition of Pb²⁺ (20 µM) and EDTA (20 µM) in HEPES buffer (20 mM, pH 7.4). Number of cycles refers to alternating Pb²⁺/EDTA cycles.
Fig. S6 (a) Fluorescence intensity of RPB1 (20 µM) at 580 nm in the absence and presence of Pb^{2+} at different pH values in HEPES buffer (20 mM, containing 2% DMSO as a cosolvent, v/v). (b) Ratio of fluorescence intensity of RPB1 at 580 nm in the presence of Pb^{2+} to that in the absence of Pb^{2+}. (c) Fluorescence stabilities of RPB1 (20 µM) at 580 nm at different pH values in HEPES buffers after treatment of Pb^{2+} for 5 min and 1 h.

Fig. S7 Benesi-Hildebrand plot of RPB1 (20 µM) with different concentrations of Cd^{2+} in HEPES buffer (20 mM, pH 7.4, containing 2% DMSO as a cosolvent, v/v). $y = 1.64896 \times 10^{-6} + 2.00698 \times 10^{-10}x$

Fig. S9 Fluorescence intensity of RPb1 (20 µM) at 580 nm (λex = 526 nm) after addition of various metals (100 equivalents for K⁺, Ca²⁺, Na⁺ and Mg²⁺, one equivalent for others) followed by Pb²⁺ (one equivalent).

Fig. S10 Colocalisation images of DLD-1 cells pretreated with Pb²⁺ (50 µM) for 4 h, then coincubated with RPb1 (50 µM) and LysoTracker Blue (100 nM) for 30 min. (a) Fluorescence channel of RPb1 (566 - 666 nm) excited with 561 nm laser. (b) Fluorescence channel of LysoTracker Blue (410 - 440 nm) excited with 405 nm laser. (c) Merged image of RPb1 channel with LysoTracker Blue channel.
Fig. S11 Cytotoxicity test of R Pb1 in DLD-1 cells over 4 h determined by Alamar Blue staining.

Fig. S12 Concentrations of transition metals in DLD-1 cells treated with or without Pb2+ at 37 °C measured by ICP-MS.

Fig. S13 Representative flow cytometry plots of K562 cells with different incubation conditions. K562 Cells were pretreated with haemin (30 µM) for 0 h (a), 1 h (b) and 5 h (c), then incubated with or without Pb2+ (50 µM) for 4 h, followed by treatment with R Pb1 (50 µM) for 30 min.
Fig. S14 Representative histograms of SC-ICP-MS for cells with different incubation conditions. (a) K562 cells were treated with Pb$^{2+}$ (50 µM) for 4 h. (b) K562 cells were preincubated with haemin (30 µM) for 1 h, then treated with Pb$^{2+}$ (50 µM) for 4 h. (c) K562 cells were preincubated with haemin (30 µM) for 5 h, then treated with Pb$^{2+}$ (50 µM) for 4 h.

Fig. S15 Representative ungated flow cytometric histograms for cells with different incubation conditions. All cells were treated with Pb$^{2+}$ (50 µM) for 4h, followed by treatment with haemin (30 µM) for 0 h (a, d), 1 h (b, e) and 4 h (c, f). Then cells were incubated with RPb1 (50 µM) for 30 min (d, e, f). All cells were stained with propidium iodide (1 µg/mL, PI) prior to flow cytometry (a, b, c, d, e, f).
6. \(^1\)H NMR and \(^{13}\)C NMR of compounds

\(^1\)H NMR spectrum of compound 1 in CDCl₃.

\(^1\)H NMR spectrum of compound 2 in MeOD.
1H NMR spectrum of compound 3 in CDCl$_3$.

1H NMR spectrum of RPb1 in CDCl$_3$.
13C NMR spectrum of RPb1 in CDCl₃.

References