Supplemental Figures

Zinc induced changes in the BDNF Met prodomain confers synaptic elimination

Jing Wang1*, Agustin Anastasia2*, Henrietta Bains1, Joanna I. Giza3, David G. Clossey4, Jingjing Deng5, Thomas A. Neubert5, William J. Rice6, Francis S. Lee3, Barbara L. Hempstead4,8, Clay Bracken1,8,9

1 Weill Cornell Medicine, Department of Biochemistry, New York, NY
2 Instituto Ferreyra (INIMEC-CONICET-Universidad Nacional de Cordoba), Córdoba, Argentina
3 City University of New, Department of Science, York, New York, NY
4 Weill Cornell Medicine, Department of Medicine, New York, NY
5 New York University School of Medicine, Skirball Institute and Department of Cell Biology, New York, NY
6 New York University School of Medicine, New York, NY
7 Weill Cornell Medicine, Department of Psychiatry, New York, NY
8 Corresponding authors
9 Lead Contact
* These authors contributed equally to this work.
Supplemental Figure 1. Zn2+ Induced NMR changes. 1H-15N HSQC NMR spectra collected using an Avance III HD-600 equipped with a TCI cryoprobe, data obtained at 5 °C at a 1H field strength of 600MHz, on 8 \textmu M prodomain for (A) Val66 (blue) and (B) Met66 (red) prodomain in the apo state and in the presence of sub-stoichiometric prodomain:zinc ratio (1:0.5) 4 \textmu M Zn2+ spectra overlaid shown in purple for both Val-Zn2+ and Met-Zn2+.

1H-15N HSQC NMR spectra collected using an Avance III HD-600 equipped with a TCI cryoprobe, data obtained at 5 °C at a 1H field strength of 600MHz, on 8 \textmu M prodomain for (A) Val66 (blue) and (B) Met66 (red) prodomain in the apo state and in the presence of sub-stoichiometric prodomain:zinc ratio (1:0.5) 4 \textmu M Zn2+ spectra overlaid shown in purple for both Val-Zn2+ and Met-Zn2+.
Supplemental Figure 2. Zn$^{2+}$ Induced CD changes.

A, B. CD data were collected using 30 µM prodomain in the apo state (solid line) and in zinc bound state (dashed line) upon addition and preequilibration with 60 µM of Zn$^{2+}$. A, CD ellipticity change for 30 µM Val prodomain and right panel displays the B, Met prodomain (red). For both Val66 and Met66 prodomains, structural analysis results were derived using K2D21.
Supplemental Figure 3. Zn$^{2+}$ Binding analysis of Val and Met prodomains.

Upon addition of 1mM CaCl$_2$ and 1mM MgCl$_2$, A, No UV turbidity changes are observed for both Val and Met prodomain at 10 mM concentration in the presence of both 1mM Ca$^{2+}$ and 1mM Mg$^{2+}$. B, Addition of 100 μM zinc, to prodomain solutions containing 1mM Ca$^{2+}$ and 1 mM Mg$^{2+}$, results in development of UV turbidity, indicating that prodomain turbidity changes are specific to addition of Zn$^{2+}$. C,D, Low concentrations of prodomain in the presence of zinc produces temporal changes in turbidity development in the presence of C, Val and D, Met. Prodomain association with zinc displays sigmoidal kinetic behavior indicating multistate initiation, growth kinetics. Met displays enhanced initiation kinetics at lower prodomain concentrations. E,F Congo red assay of Zn$^{2+}$ Val and Met prodomain aggregates, respectively. No evident red-shifts or significant absorbance changes are observed, indicating that the solutions lack characteristic changes observed in amyloid fibril formation. G, The H40K substitution blocks Zn$^{2+}$ mediated particle formation in both Val and Met prodomain.
Supplemental Figure 4. NMR relaxation measurements detect dynamic mobility differences in Met and Val prodomains in the absence of Zn$^{2+}$.

NMR 15N longitudinal T$_1$ and transverse T$_2$ relaxation measurements were collected as described in prior publications 2, 3. NMR relaxation decay curves were fitted to single exponential decay models to extract R$_1$ and R$_2$ relaxation rates using python scripts incorporated in NMRFAM-Sparky. Regions of exchange are evident in both isoforms, the extent of chemical regions undergoing exchange are greatly enhanced in Met66, specifically residues 60-72 (66-region) and residues 100-121 (111-region). NMR resonances neighboring Val66 displayed reduced intensity yet were observable, whereas key residues neighboring Met66 are entirely absent (Figure 1E,F, Figure S2A,B). Notably, both isoforms retained full peak intensity in the NMR resonances outside these regions, namely, at the N-terminus (residues 19-58) and intervening residues between the 66-region and 111-regions (residues 74-90) (Figure. S4A,B,D), indicating that these residues do not participate in intermolecular-association in the apo state. This indicates that Met66 substitution significantly increases the propensity for prodomain self-association in comparison to the Val66 isoform.
Supplemental Figure 5. Concentration dependent spectral changes in differ between Val and Met prodomain, in the critical 66-region and C-terminal regions. A ten-fold change in protein concentration reveals differences in (A) 1H-15N NMR HSQC correlation overlaid spectra showing the backbone amide resonances of 88 μM of Val66/Met (black) and the 8.8 μM of Val(blue), Met (red). (B) Changes in relative NMR peak intensity ratios of $I_{88\mu M}/I_{8.8\mu M}$ indicate greater losses for Met (red) in the 66 region compared to Val (blue). (C) Diffusion measurements indicate concentration dependent increase in hydrodynamic volume for both Val (blue) and Met (red). Conditions under which diffusion rates are unchanged for internal diffusion reference standard DSS and Dioxin. Both NMR peak intensity changes and diffusion measurements indicate Met displays greater concentration dependent intermolecular association consistent with an apparent increase in molecule weight going from 8.8 μM, 88 μM and 157 μM concentrations, indicating a significantly greater intermolecular association than Val.
Supplementary Table 1. Thermodynamic parameters, determined by ITC, for the association of prodomains Val and Met with zinc.

A

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Kd(µM)</th>
<th>ΔG (kJ/mol)</th>
<th>ΔH (kJ/mol)</th>
<th>ΔS (J/mol-K)</th>
<th>-TΔS (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val66</td>
<td>1.5±0.3</td>
<td>12.5±1.7</td>
<td>-26.6</td>
<td>16.6±0.04</td>
<td>153</td>
<td>-43.2</td>
</tr>
<tr>
<td>Met66</td>
<td>0.9±0.1</td>
<td>23.8±8.4</td>
<td>-25.2</td>
<td>18.9±0.5</td>
<td>155</td>
<td>-44.0</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>n1</th>
<th>n2</th>
<th>Kd1(µM)</th>
<th>Kd2(µM)</th>
<th>ΔS1 (J/mol-K)</th>
<th>ΔS2 (J/mol-K)</th>
<th>ΔH1 (kJ/mol)</th>
<th>ΔH2 (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH40K</td>
<td>1.1±0.3</td>
<td>1.2±0.7</td>
<td>3.9±5.6</td>
<td>347±566</td>
<td>142</td>
<td>182</td>
<td>1.3±1.3</td>
<td>29±36</td>
</tr>
<tr>
<td>MH40K</td>
<td>0.5±0.1</td>
<td>0.6±0.2</td>
<td>0.4±0.2</td>
<td>41±36</td>
<td>131</td>
<td>266</td>
<td>1.9±0.3</td>
<td>51±64</td>
</tr>
</tbody>
</table>

The fitted results of the ITC titration data resulting from fitting from titration of 1µl aliquots of 1mM Zn\(^{2+}\) into (A) 30µM Val or Met prodomain solutions or (B) 30µM Val-H40K (VH40K) or Met-H40K (MH40K) isoform mutants. All data were collected at 10 C. The calculated thermodynamics parameters are the result of separate 3 titration measurements.

Supplemental References: