Electronic Supplementary Information

Perpendicularly aligned nanodomains on versatile substrates *via* rapid thermal annealing assisted by liquid crystalline ordering in block copolymer films

Ting Qu,^a Song Guan,^a Xiaoxiong Zheng,^a and Aihua Chen*^a

^aSchool of Materials Science and Engineering, Beihang University, Beijing 100191,

P. R. China

*E-mail: chenaihua@buaa.edu.cn

Fig. S1 ¹H NMR spectra of PS macroinitiators and PS-*b*-PMA(Az) BCPs.

Fig. S2 GPC curves of the PS macroinitiators and PS-*b*-PMA(Az) BCPs with THF as eluent.

Fig. S3 DSC curves of polymers on the first cooling (a) and second heating (b) processes with a heating/cooling rate of ± 10 °C min⁻¹.

Fig. S4 POM image (a) and WAXD profile (b) of the PS_{100} -*b*-PMA(Az)₄₄ samples.

Fig. S5 SEM top (a, c, e, g) and cross-sectional (b, d, f, h) images of PS_{100} -*b*- $PMA(Az)_{44}$ thin films after thermal annealing at 140 °C for different times before RIE: (a, b) 0 min, (c, d) 1 min, (e, f) 3 min and (g, h) 5 min.

Fig. S6 TEM images (inset: FFT images) of cylindrical PS_{100} -*b*-PMA(Az)₄₄ (a) and lamellar PS_{100} -*b*-PMA(Az)₂₂ (b) thin films after thermal annealing at 140 °C for 5 min.

Fig. S7 The etching rate of PS, PMMA and PMA(Az) polymer films at the same RIE conditions: O_2/Ar (40/10) sccm/50 W/75 mTorr.

Fig. S8 SEM images of PS_{100} -*b*-PMA(Az)₄₄ self-assembled cylindrical films after different RIE conditions: (a, b) O₂/50 sccm/50 W/75 mTorr/30 s, (c, d) O₂/Ar (15/3) sccm/50 W/75 mTorr/30 s, (e, f) O₂/Ar (40/10) sccm/100 W/75 mTorr/30 s, (g, h) O₂/Ar (40/10) sccm/50 W/75 mTorr/60 s, (i, j) O₂/Ar (40/10) sccm/50 W/75 mTorr/30

Fig. S9 SEM top (a, c, e, g) and cross-sectional (b, d, f, h) images of PS_m -*b*-PMA(Az)_n self-assembled cylindrical films with different diameters after RIE: O₂/Ar (40/10) sccm/50 W/75 mTorr/30 s. (a, b) PS_{100} -*b*-PMA(Az)₅₉, (c, d) PS_{100} -*b*-PMA(Az)₃₅, (e, f) PS_{100} -*b*-PMA(Az)₃₂, (g, h) PS_{100} -*b*-PMA(Az)₂₇, respectively.

Fig. S10 TEM (a) and AFM (b) images of PS_{100} -*b*-PMA(Az)₂₄ self-assembled thin films. SEM top (c) and cross-sectional (d) images of above films after RIE: O₂/Ar (40/10) sccm/50 W/75 mTorr/30 s.

Fig. S11 SEM top (a) and cross-sectional (b) images of PS_{100} -*b*-PMA(Az)₁₈ selfassembled lamellar films after RIE: O₂/Ar (40/10) sccm/50 W/75 mTorr/30 s.

Fig. S12 SEM top (a) and cross-sectional (b) images of PS_{42} -*b*-PMA(Az)₁₆ films after RIE: O₂/Ar (40/10) sccm/50 W/75 mTorr/30 s.

Fig. S13 (a) TEM image of cylindrical PS_{28} -*b*-PMA(Az)₆₈ thin film. (b) The magnification of the boxed area inserts in (a).

Fig. S14 Cross-sectional TEM (a) and top-view AFM height (b) images of the annealed PS_{100} -*b*-PMA(Az)₄₄ film on PET sheet.