Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis of amino phosphinodiselenoic acid ester and β -amino diselenides employing P_2Se_5

Roopesh Kumar L, Sagar N. R, Divya K, Madhu C and Vommina V Sureshbabu* Peptide Research Laboratory, Department of Studies in Chemistry, Bangalore University, Jnana Bharathi, Bangalore-560 056, India. Email: sureshbabuvommina@rediffmail.com, hariccb@hotmail.com.

Full experimental details

Starting materials used for the following reactions were obtained from Sigma-Aldrich, Spectrochem used as received unless otherwise mentioned. HPLC grade solvents and distilled water were used for reactions. Reactions were done under inert nitrogen atmosphere. Analytical thin layer chromatography was done on TLC silica gel 60 F₂₅₄ obtained from Merck. Spots were visualised by using one of the (or all the) following methods : (1) UV activity (2) treating with iodine. Column chromatography was carried out on Spectrochem silica gel (60-120 mesh or 100-200 mesh). Solvents of laboratory reagent grade were used for column purification. Mass spectra were recorded by using Shimadzu LC 2020. ¹H NMR spectra were recorded on a Bruker AV-400 spectrometer with chemical shifts reported as ppm (in DMSO-*d6*/CDCl₃ with TMS as internal standard). ¹³C NMR, ⁷⁷Se, ³¹P spectra were recorded on a Bruker AMX 100, 76 and 162 MHz respectively with DMSO-*d6*/CDCl₃. High resolution mass spectra (HRMS) were obtained from on Agilent Technologies 6538 UHD Accurate-Mass Q-TOF.

General Experimental Procedures

Procedure for the Preparation of P₂Se₅

Red phosphorus, washed with anhydrous ether and dried (31 mg, 1 mmol) was taken into glass vial and greyish elemental selenium (200 mg, 2.5 mmol) was added. The resulting mixture was heated under electric bunsen till it turned to glassy black-purple solid. It was then cooled to rt and the material was well grounded in to consistent powder.

General procedure of amino phosphinodiselenoic esters 2

Freshly prepared P_2Se_5 (20 mmol) and ethanol (10 mL) were refluxed under nitrogen atmosphere until the evolution of H_2Se ceased. A solution of N^{α} -protected amino alkyl iodide (10 mmol) in EtOH was added to the reaction mixture and refluxed. After complete consumption of alkyl iodide (TLC analysis), the reaction mixture was filtered and the filterate was evaporated and purified through column chromatography (Hexane:EtOAc = 8:2).

General procedure for symmetrical diselenides 3

To the solution of N^{α} -protected amino alkyl iodide/alkyl halide (10 mmol) in polar aprotic solvents (ACN, THF, and DCM) was added freshly prepared powdered blacky purple P₂Se₅ (20 mmol). The reaction mixture was refluxed, subsequently few drops of water were added. After complete consumption of the starting components (TLC analysis) the solvent was evaporated and isolated after column purification (Hexane:EtOAc = 8:2).

Characterization data

<u>N^{*a*}-protected amino phosphinodiselenoic esters</u>

1. Fmoc-Leu-CH₂-Se-P(Se)(OEt)₂ [2a]:

Yellow gummy solid, yield = 88%, $[\alpha]^{30}_{D}$ = +21.92 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.95 (d, *J* = 7.2 Hz, 1H), 7.82 – 7.25 (m, 8H), 4.88 (d, *J* = 8.8 Hz, 2H), 4.48 (t, *J* = 8.0 Hz, 1H), 4.28 – 4.01 (m, 5H), 1.88 – 1.74 (m, 2H), 1.70 – 1.52 (m, 3H), 1.43 – 1.20 (m, 6H), 0.93 (d, *J* = 4 Hz, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 154.75, 142.88, 140.32, 126.66, 126.05, 124.04, 120.09, 67.35, 59.99, 48.38, 46.31, 43.54, 24.00, 21.94, 21.20, 18.33. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 289.80 (d, *J*_{P-Se} = 482 Hz), -88.19 (d, *J*_{P-Se} = 888 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 86.59 (s + dd satellites). HRMS: m/z Calculated for C₂₅H₃₅NO₄PSe₂ [M + H]⁺604.0634; found: 604.0638.

2. Fmoc-Ile-CH₂-Se-P(Se)(OEt)₂ [2b]:

Yellow gummy solid, yield = 83%, $[\alpha]^{30}_{D}$ = +57.47 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.94 (d, *J* = 6.8 Hz, 1H), 7.81 – 7.25 (m, 8H), 5.08 (d, *J* = 8 Hz, 2H), 4.50 (t, *J* = 8.0 Hz, 1H), 4.28 – 4.02 (m, 5H), 2.40 – 2.19 (m, 1H), 1.90 – 1.75 (m, 2H), 1.63 – 1.50 (m, 2H), 1.45 – 1.20 (m, 6H), 0.98 – 0.77 (m, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.07, 143.93, 141.37, 127.73, 127.12, 125.13, 120.00, 66.68, 59.56, 51.37, 47.38, 44.03, 25.37, 21.85, 19.13, 18.91, 11.60. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 288.03 (d, *J*_{P-Se} = 461 Hz), -86.98 (d, *J*_{P-Se} = 799 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 82.17 (s + dd satellites).

3. Cbz-Phe-CH₂-Se-P(Se)(OEt)₂ [2c]:

Yellow gummy solid, yield = 82%, $[\alpha]^{30}_{D}$ = +76.08 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.15 (m, 10H), 4.97 (s, 2H), 4.16 – 3.87 (m, 5H), 3.10 – 2.85 (m, 2H), 1.91 – 1.76 (m, 2H), 1.38 – 1.19 (m, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.45, 138.03, 137.09, 129.04, 128.22, 128.15, 127.61, 127.36, 126.20, 69.11, 61.23, 50.18, 45.47, 23.19, 18.10. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 284.87 (d, *J*_{P-Se} = 485 Hz), - 89.04 (d, *J*_{P-Se} = 888 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 85.17 (s + dd satellites).

4. Fmoc-[Ser-CH₂-Se-P(Se)(OEt)₂]-COOMe [2d]:

Yellow liquid, yield = 79%, $[\alpha]^{26}_{D}$ = +12.77 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 8.15 (br s, 1H), 7.95 – 7.26 (m, 8H), 4.8 (d, *J* = 8 Hz, 2H), 4.50 – 4.32 (m, 2H), 4.23 – 4.03 (m, 4H), 3.71 (s, 3H), 2.15 – 1.98 (m, 2H), 1.40 – 1.13 (m, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 172.70, 156.54, 143.92, 140.67, 127.52, 126.98, 125.07, 120.04, 64.92, 60.35, 52.51, 52.11, 46.68, 20.15, 18.49. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 284.83 (d, *J*_{P-Se} = 477 Hz), -89.58 (d, *J*_{P-Se} = 981 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 85.18 (s + dd satellites).

5. Fmoc-Ala-CH₂-Se-P(Se)(OEt)₂ [2e]:

Yellow gummy solid, yield = 86%, $[\alpha]^{28}_{D}$ = -28.80 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 8.15 (d, *J* = 8 Hz, 1H), 7.92 – 7.28 (m, 8H), 4.75 (d, *J* = 8 Hz, 2H), 4.51 (t, *J* = 7.8 Hz, 1H), 4.21 = 3.95 (m, 5H), 1.96 – 1.74 (m, 2H), 1.39 – 1.18 (m, 9H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.93, 143.59, 140.69, 127.54, 126.98, 125.07, 120.05, 66.13, 59.51, 46.70, 44.54, 25.84, 24.03, 18.80. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 257.96 (d, *J*_{P-Se} = 642 Hz), - 87.51 (d, *J*_{P=Se} = 1074 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 81.68 (s + dd satellites). HRMS: m/z Calculated for C₂₂H₂₉NO₄PSe₂ [M + H]⁺ 562.0165; found: 562.0170.

6. Fmoc-Phg-CH₂-Se-P(Se)(OEt)₂ [2f]:

Yellow gummy solid, yield = 81%, $[\alpha]^{25}_{D}$ = +47.16 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 8.08 (d, *J* = 8 Hz, 1H), 7.92 – 7.20 (m, 13H), 4.96 (t, *J* = 7.2 Hz, 1H), 4.76 (d, *J* = 8 Hz, 2H), 4.52 (t, *J* = 8 Hz, 1H), 4.28 – 4.19 (m, 4H), 2.08 – 1.83 (m, 2H), 1.36 – 1.16 (m, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.43, 143.69, 140.69, 128.51, 127.95, 127.56, 126.97, 126.54, 126.16, 125.04, 120.07, 65.32, 59.32, 55.17, 46.69, 26.11, 18.66. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 278.04 (d, *J*_{P-Se} = 508 Hz), -89.22 (d, *J*_{P=Se} = 855 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 82.31 (s + dd satellites).

7. Cbz-Val-CH₂-Se-P(Se)(OEt)₂ [2g]:

Yellow gummy solid, yield = 84%, $[\alpha]^{26}_{D}$ = +3.84 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 8.06 (d, J = 7.8 Hz, 1H), 7.78 – 7.20 (m, 5H), 5.01 (s, 2H), 4.23 – 3.98 (m, 5H), 2.50 – 2.29 (m, 1H), 2.05 – 1.85 (m, 2H), 1.39 – 1.13 (m, 6H), 0.84 (d, J = 7.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.86, 137.24, 128.26, 127.67, 127.06, 67.36, 59.30, 54.87, 37.38, 22.02, 20.30, 18.95. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 290.68 (d, J_{P-Se} = 442 Hz), -90.37 (d, J_{P-Se} = 819 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 81.82 (s + dd satellites).

<u>**β-amino diselenides**</u>

1. Boc-Leu-CH₂-Se)₂ [3a]:

Gummy solid, yield = 91%, $[\alpha]^{29}_{D}$ = +20.60 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 6.71 (d, J = 8.8 Hz, 2H), 3.95 – 3.71 (m, 2H), 1.85 – 1.70 (m, 4H), 1.65 – 1.50 (m, 6H), 1.36 (s, 18H), 0.85 (d, J = 8.8 Hz, 12 H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.15, 80.27, 48.46, 46.03, 28.20, 25.95, 24.51, 23.02. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 282.80. HRMS: m/z Calculated for C₂₂H₄₅N₂O₄Se₂ [M + H]⁺ 561.1710; found: 561.1705.

2. Boc-Val-CH₂-Se)₂ [3b]:

Gummy solid, yield = 93%, $[\alpha]^{26}_{D}$ = +126.98 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 6.66 (d, J = 12 Hz, 2H), 3.98 – 3.79 (m, 2H), 2.60 – 2.39 (m, 2H), 1.81 – 1.69 (m, 4H), 1.37 (s, 18H), 0.84 (d, J = 8Hz, 12H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.54, 80.20, 52.25, 37.02, 28.22, 23.28, 19.05. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 282.40.

3. Fmoc-Ile-CH₂-Se)₂ [3c]:

Gummy solid, yield = 95%, $[\alpha]^{26}_{D}$ = +42.89 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.91 - 7.24 (m, 16H), 6.74 (d, *J* = 7.2 Hz, 2H), 4.84 (d, *J* = 6.4 Hz, 4H), 4.45 (t, *J* = 6.4 Hz, 2H), 3.95 - 3.81 (m, 2H), 2.35 - 2.20 (m, 2H), 1.98 - 1.77 (m, 8H), 0.99 - 0.76 (m, 12H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.02, 143.88, 140.67, 127.53, 126.94, 125.17, 120.03, 65.15, 56.84, 46.77, 44.94, 25.47, 22.92, 17.89, 11.71. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 301.19.

4. Boc-Gly-CH₂-Se)₂ [3d]:

Gummy solid, yield = 85%. ¹H NMR (400 MHz, DMSO-d₆) δ 6.51 (d, *J* = 6 Hz, 2H), 3.01 (t, *J* = 6.8 Hz, 4H), 2.06 (t, *J* = 6.8 Hz, 4H), 1.41 (s, 18H). ¹³C NMR (100 MHz, DMSO-d₆) δ 153.69, 79.07, 38.23, 28.66, 22.73. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 291.28.

5. Cbz-Ala-CH₂-Se)₂ [3e]:

Gummy solid, yield = 90%, $[\alpha]^{27}_{D}$ = +84.62 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.44 - 7.20 (m, 10H), 6.60 (d, *J* = 8 Hz, 2H), 5.01 (s, 4H), 3.92 - 3.75 (m, 2H), 1.96 - 1.79 (m, 4H), 1.33 (d, *J* = 6 Hz, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.85, 137.64, 128.81, 128.22, 127.65, 65.66, 47.87, 27.11, 23.43. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 290.37.

6. Cbz-Phe-CH₂-Se)₂ [3f]:

Gummy solid, yield = 96%, $[\alpha]^{28}{}_{D}$ = +2.40 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.43 – 7.07 (m, 20H), 6.50 (d, J = 7.2 Hz, 2H), 4.97 (s, 4H), 4.08 – 3.86 (m, 2H), 2.97-2.62 (m, 4H), 1.99-1.82 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.04, 138.92, 137.72, 129.59, 128.75, 128.63, 128.11, 127.88, 126.61, 65.46, 53.66, 46.08, 25.62. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 289.07. HRMS: m/z Calculated for C₃₄H₃₇N₂O₄Se₂ [M + H]⁺ 697.1083; found: 697.1085.

7. Fmoc-Phg-CH₂-Se)₂ [3g]:

Gummy solid, yield = 92%, $[\alpha]^{28}_{D}$ = +14.45 (c 1.0, MeOH). ¹H NMR (400 MHz, DMSO-d₆) δ 7.97 – 7.16 (m, 26H), 6.46 (d, J = 7.2 Hz, 2H), 4.99 (t, J = 6.8 Hz, 2H), 4.76 (d, J = 6 Hz, 4H), 4.69 (t, J = 6.4 Hz, 2H), 2.10 – 1.85 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.96, 144.29, 141.19, 138.91, 129.62, 128.60, 128.06, 127.49, 126.57, 125.67, 120.56, 65.71, 53.65, 47.21, 28.51. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 307.83.

Spectral data

Amino phosphinodiselenoic esters

¹³C NMR spectrum of compound 2a

⁷⁷Se NMR spectrum of compound 2a

¹H NMR spectrum of compound 2b

⁷⁷Se NMR spectrum of compound 2b

³¹P NMR spectrum of compound 2b

¹H NMR spectrum of compound 2c

 $^{77}\mbox{Se}$ NMR spectrum of compound 2c

³¹P NMR spectrum of compound 2c

¹H NMR spectrum of compound 2d

 $^{77}\mbox{Se}$ NMR spectrum of compound 2d

³¹P NMR spectrum of compound 2d

¹H NMR spectrum of compound 2e

⁷⁷Se NMR spectrum of compound 2e

HRMS of compound 2e

 $^1\mathrm{H}$ NMR spectrum of compound 2f

¹³C NMR spectrum of compound 2f

³¹P NMR spectrum of compound 2f

¹³C NMR spectrum of compound 2g

³¹P NMR spectrum of compound 2g

<u>**β-amino diselenides**</u>

¹³C NMR spectrum of compound 3a

⁷⁷Se NMR spectrum of compound 3a

HRMS of compound 3a

¹³C NMR spectrum of compound 3b

¹H NMR spectrum of compound 3c

¹³C NMR spectrum of compound 3c

⁷⁷Se NMR spectrum of compound 3c

¹³C NMR spectrum of compound 3d

¹H NMR spectrum of compound 3e

⁷⁷Se NMR spectrum of compound 3e

¹³C NMR spectrum of compound 3f

 $^{77}\mbox{Se}$ NMR spectrum of compound 3f

HRMS of compound 3f

¹³C NMR spectrum of compound 3g

 $^{77}\mbox{Se}$ NMR spectrum of compound 3g