Supporting Information for New Journal of Chemistry

Superior photoresponse MIS Schottky barrier diodes with nanoporous: Sn-WO$_3$ films for ultraviolet photodetector application

Marnadu Raj, a Chandrasekaran Joseph, a* Maruthamuthu Subramanian, b
Vivek Perumalsamy, a Vijayakumar Elayappan, c

a) Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
b) Department of Physics, Dr. Mahalingam College of Engineering and Technology, Pollachi-642 003, Tamil Nadu, India.
c) Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea

Ph: +91-422-2692461, Fax: +91-422-2692676
E-mail: jchandaravind@yahoo.com
(Date: 03.04.2020)

Supporting Information

The significant structural parameters such as crystallite size (D) dislocation density (δ), microstrain (ε), stacking fault (SF) and texture coefficient (TC) of the Sn-WO$_3$ films were calculated using the following equations.

\[D = \frac{0.89 \lambda}{\beta \cos \theta} \]
(1)

\[\delta = \frac{1}{D^2} \]
(2)

\[\varepsilon = \frac{\lambda}{D \sin \theta} - \frac{\beta}{\tan \theta} \]
(3)

\[SF = \left[\frac{2\pi^2}{45(3 \tan \theta)^2} \right]^{1/2} \beta \]
(4)

Where D is the crystallite size, λ is the wavelength, β is the full width half the maximum (FWHM) of the diffraction peak and θ is the angle of diffraction.

The texture coefficient (TC) is the essentials parameter to analyze the diffraction peaks of the films, which is calculated from the following relation.
Where TC is the texture coefficient, n is the reflection number, I_s is the standard intensity and I_o is the observed intensity.

Optical band gap values of the Sn-WO$_3$ composite films were calculated using the following formula.

\[(ahv)^{1/2} = A (hv - E_g)\]

Where α is the absorption coefficient, h is the Planck's constant, A is the constant and E_g is the band gap energy.

The optical parameters of the Sn-WO$_3$ composite films were calculated using the following relations.

\[\ln \left(\frac{1}{T}\right) = \frac{\alpha}{t}\]

\[k = \frac{\alpha \lambda}{4\pi}\]

\[\sigma_{opt} = \frac{nc\alpha}{4\pi}\]

\[n = \frac{1 + R}{1 - R} \pm\]

Where α is the absorption coefficient, n is the refractive index, T is the transmittance, t is the thickness of the film, c is the velocity of light and λ is the wavelength.

The electrical resistivity (ρ) of the coated films were calculated using the following equation and are listed in Table 4.

\[\rho = R \left(\frac{A}{t}\right) \Omega cm\]

Where ρ is the resistivity, R is the resistance, A is the area of the film and t is the film thickness.

The activation energy (E_a) of the films were deduced from the Arrhenius plots (Fig. 10) and using the following equation.
\[\sigma_{dc} = \sigma_0 \exp \left(\frac{-E_a}{k_B T} \right) \]

(12)

Where \(E_a \) is the activation energy, \(T \) is the temperature, \(\sigma_{dc} \) is the conductivity, \(\sigma_0 \) is the pre-exponential factor and \(k_B \) is the Boltzmann constant.

The current conduction mechanism of the Cu/p-Si Schottky diode through nanoporous:Sn-WO\(_3\) layer was explained by thermionic emission theory (TET) using the following equations.

\[I = AA^* T^2 \exp \left(-\frac{q \phi_B}{K_B T} \right) \left[\exp \left(\frac{qV}{nK_B T} \right) - 1 \right] \]

(13)

Here,

\[I_0 = AA^* T^2 \exp \left(-\frac{q \phi_B}{K_B T} \right) \]

(14)

Where \(I_0 \) is the reverse saturation current, \(q \) is the charge of an electron, \(V \) is the bias voltage, \(n \) is the ideality factor, \(\phi_B \) is the effective barrier height, \(A \) is the active area of the diode, \(K_B \) is the Boltzmann constant, \(T \) is the temperature and \(A^* \) is the effective Richardson constant.

The ideality factor (\(n \)) of the diode was deduced from the intercepts of semi-logarithmic plots of \(\ln J \) vs voltage and using the following equation.

\[n = \frac{q}{k_B T} \left(\frac{d(V)}{d(\ln(I))} \right) \]

(15)

The effective barrier height of the Cu/Sn-WO\(_3\)/p-Si diode was calculated by the following expression.

\[\phi_B = \frac{K_B T}{q} \ln \left(\frac{AA^* T^2}{I_0} \right) \]

(16)

The photo-sensitivity (\(P_s \)), responsivity (\(R \)), external quantum efficiency (\(EQE \)) and specific detectivity (\(D^* \)) of the diodes were calculated by the following equations.

\[P_s (\%) = \frac{I_{Ph} - I_D}{I_D} \times 100 \]

(17)

\[R = \frac{I_{Ph}}{P A} \]

(18)

\[QE = \frac{R \chi}{q \lambda} \]

(19)
\[D^* = \frac{R}{(2qI_D)^{1/2}} \]

(20)

Where \(I_D \) is the dark current, \(I_{Ph} \) is the photocurrent, \(A \) is the area of the diode, \(h \) is the Planck’s constant, \(p \) is the irradiation of the lamp, \(c \) is the light velocity, \(q \) is the charge of electron and \(\lambda \) is the wavelength.

Supplementary Figures

Fig. S1. Structural parameters vs Sn concentration (wt.%) for Sn-WO₃ films.
Fig. S2. EDX spectrum of Sn-WO₃ films with different concentrations of Sn.
Fig. S3. Optical parameters vs various Sn concentrations (wt%) in WO$_3$ films.

Fig. S4. Electrical parameters vs different Sn concentrations for Sn-WO$_3$ films.

Supplementary Tables

Table S1 Structural parameters of (002), (020) and (200) planes with different Sn concentration.

<table>
<thead>
<tr>
<th>Sn Concentrations (wt.%)</th>
<th>Diffraction angle 2θ (°)</th>
<th>Interplanar distance (d) (Å)</th>
<th>FWHM (Radian)</th>
<th>Crystallite size (D) (nm)</th>
<th>Micro strain (ε)</th>
<th>Dislocation density (δ) (× 1014 lines m$^{-2}$)</th>
<th>Stacking fault (SF) (× 10$^{-2}$)</th>
<th>Texture coefficient (TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.34</td>
<td>3.8106</td>
<td>0.00429</td>
<td>33.0</td>
<td>1.0511</td>
<td>9.1819</td>
<td>0.2142</td>
<td>0.914</td>
</tr>
<tr>
<td></td>
<td>23.85</td>
<td>3.7304</td>
<td>0.00343</td>
<td>41.2</td>
<td>0.8401</td>
<td>5.8655</td>
<td>0.1735</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>24.56</td>
<td>3.6242</td>
<td>0.00343</td>
<td>41.3</td>
<td>0.8390</td>
<td>5.8500</td>
<td>0.1764</td>
<td>1.172</td>
</tr>
<tr>
<td>Sn concentrations (wt. %)</td>
<td>Atomic ratio (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sn</td>
<td>W</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>23.52</td>
<td>76.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.83</td>
<td>13.64</td>
<td>84.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.97</td>
<td>12.18</td>
<td>84.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.20</td>
<td>11.20</td>
<td>84.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S2 Atomic percentage of Sn-WO₃ composite thin films.